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ABSTRACT. Trigonometric polynomials are widely used in different fields of engineering and science.

Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We

construct the half-factorial domains T ′
2, T ′

3 and T ′
4 which are the subrings of the ring of complex trigono-

metric polynomials T ′, such that T ′
2 ⊆ T ′

3 ⊆ T ′
4 ⊆ T ′. We also discuss among these three subrings the

Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x′ ∈ U(B)

and x′′ ∈ A such that x = x′x′′, where U(B) denote the group of units of B .

Keywords: trigonometric polynomial, HFD, condition 1, condition 2, irreducible.

Mathematical subject classification: 13A05, 13B30, 12D05, 42A05.

1 INTRODUCTION

Often it becomes interesting and fruitful to bridge different fields of study. Some time resolving
one problem becomes much easier if we translate it into some equivalent problem. As we know
from computer science, all NP-hard problems are equivalent. Resolution of one NP-hard problem
can benefit the other, if we are able to translate the problem correctly. For example, logical
solvers like SAT Solvers are used for cryptanalysis and solving algebraic system of equations
over GF(2) [3, 4]. The more recent fields of study in this direction are, approximate commutative
algebra [18] and numerical algebraic geometry [22]. We are hopeful that our study in this paper
could be one of such contributions.

Trigonometric polynomials are widely used in different fields of engineering and science, like
trigonometric interpolation applied to the interpolation of periodic functions, approximation the-
ory, discrete Fourier transform, and real and complex analysis, etc. We are developing this study
by keeping in mind, the possibility that studding factorization properties of these polynomials
could help studying the above fields and especially Fourier series, that is, the study of big waves
(a trigonometric polynomial) in terms of small wavelets (irreducibles). The study of Fourier se-
ries is a vast field of study by itself and this study will help to understand a big Fourier series in
terms of smaller Fourier series.
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We refer to [9, 10] and reference therein, for a short review of some of the recent interesting

results on nonnegative trigonometric polynomials and their applications in Fourier series, sig-
nal processing, approximation theory, function theory and number theory. Many applications,
especially in mechanical engineering and in numerical analysis lead to quantifier elimination

problems with trigonometric functions involved (see [14]). Decompositions of trigonometric
polynomials with applications to multivariate subdivision schemes is studied in [11], random
almost periodic trigonometric polynomials and applications to ergodic theory can be found in

[6], a detailed treatment of trigonometric series can be found in [26], and a new proof of a theo-
rem of Littlewood concerning flatness of unimodular trigonometric polynomials is given in [5],
this proof is shorter and simpler than Littlewood’s. Inspired by the above stated applications and

lot more, we investigate trigonometric polynomials using an algebraic approach. Throughout this
article we follow the notation and definitions introduced in [15, 25] unless mentioned otherwise.

In polynomial rings, factorization properties of integral domains have been a frequent topic of
recent mathematical literature. Recall that a Unique Factorization Domain (UFD) is an integral

domain in which every non-unit element can be uniquely expressed, up to isomorphism, as a
product of irreducible elements. A Principal Ideal Domain (PID) is an integral domain in which
every ideal is principal, i.e., can be generated by a single element. An integral domain D is atomic
if each nonzero nonunit of D is a product of irreducible elements (atoms) of D, [7] and it is well

known that UFDs, PIDs and Noetherian domains are atomic domains. In an integral domain D,
if there does not exist any infinite strictly ascending chain of principal integral ideals, it is said to
satisfy the ascending chain condition on principal ideals (ACCP). Noetherian domains, PIDs and

UFDs satisfy ACCP and domains satisfying ACCP are atomic. For examples of atomic domains
which do not satisfy ACCP we refer to Grams [12] and Zaks [24].

Another interesting type of domains in commutative algebra is of half-factorial domains. An
integral domain D is said to be a half-factorial domain (HFD) if D is atomic and whenever

x1 . . . xm = y1 . . . yn , where x1, x2 . . . xm , y1, y2 . . . yn are irreducibles in D, then m = n [23].
Since we obtain HFDs by dropping uniqueness condition on UFDs, a UFD is obviously an HFD.
But the converse is not true, since any Krull domain D with C I (D) ∼= Z2 is an HFD [23], but

not a UFD. Moreover, a polynomial extension of an HFD is not an HFD anymore, for instance
Z[√−3][X ] is not an HFD, as Z[√−3] is an HFD but not integrally closed [8]. In general we
have,

UFD =⇒ HFD =⇒ ACCP =⇒ Atomic

Note that none of the above implications is reversible. By U (D) we denote the group of units
of D.

Half-factoriality of integral domains have been a frequent topic of the recent mathematical litera-
ture, particularly for polynomial rings. In this study we would investigate half-factorial domains

which are the subrings of the complex trigonometric polynomial ring T ′ (see [15]). The basic
concepts, notions and terminology are as standard in [15], [20] and [21].

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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For the factorization of exponential polynomials, J.F. Ritt developed: “If

1 + a1eα1 x + · · · + aneαn x is divisible by 1 + b1eβ1 x + · · · + br eβr x

with no b = 0, then every β is a linear combination of α1,..., αn with rational coefficients” [17,
Theorem]. Latter on getting inspired by this, G. Picavet and M. Picavet [15] investigated some

factorization properties in trigonometric polynomial rings. Following [15], when we replace all
αk above by im, with m ∈ Z, we obtain trigonometric polynomials. Whereas

T ′ =
{ n∑

k=0

(akCoskx + bk Sinkx) : n ∈ N, ak, bk ∈ C
}

and

T =
{ n∑

k=0

(akCoskx + bk Sinkx) : n ∈ N, ak, bk ∈ R
}

are the trigonometric polynomial rings.

Again following [15], Sin2x = (1 − Cosx)(1 + Cosx) shows that two different non-associated

irreducible factorizations of the same element may appear. Throughout we denote by Coskx
and Sinkx the two functions x �→ Coskx and x �→ Sinkx (defined over R). Also from basic
trigonometric identities, it is obvious that for each n ∈ N\{1}, Cosnx represents a polynomial in

Cosx with degree n and Sinnx represents the product of Sinx and a polynomial in Cosx with
degree n − 1. Conversely by linearization formulas, it follows that any product Cosn x Sin px can
be written as:

q∑
k=0

(akCoskx + bk Sinkx), where q ∈ N and ak, bk ∈ Q.

Hence T = R[Cosx, Sinx] ⊆ C[Cosx, Sinx] = T ′.

As proved in [15, Theorem 2.1 & Theorem 3.1], T ′ is a Euclidean domain and T is a Dedekind
half factorial domain. We continue the investigations to find the factorization properties in
trigonometric polynomial rings, begun in [15] and extended in [20] and [21], by extending this

study towards finding half-factorial subrings of the complex trigonometric polynomial ring T ′.
In section 2, we define three subrings T ′

2, T ′
3 and T ′

4 of T ′. We explore T ′
2, T ′

3 and T ′
4, and prove

that each of the three new subrings, T ′
2, T ′

3, and T ′
4 is an HFD isomorphic to (Q+XR[X ])X ,

(Q+XC[X ])X and (Q(i)+XC[X ])X respectively. In section 3, we discussed Condition 1 (see
[16, page 661]) among the three half-factorial domains. We conclude this paper by summarizing
the results and discussing further research and applications.

2 THE SUBRINGS OF C[Cosx, Sinx]
In this section we study three HFDs which are subrings of the ring of complex trigonometric
polynomial ring. After knowing that an integral domain is an HFD, immediately we can deduce
several useful properties.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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2.1 The Construction of T ′
2

Consider the following set

T ′
2 =

{ n∑
k=0

(akCoskx + ibk Sinkx), n ∈ N, ak, bk ∈ R, an = α + β, bn = β − α

}
,

where α ∈ Q, β ∈ R and α, β are not simultaneously zero. Let z ∈ T ′
2. We may write

z = a0 +
n−1∑
k=1

(akCoskx + ibk Sinkx) + {(α + β)Cosnx + i(β − α)Sinnx}.

As Cosx = eix +e−ix

2 and Sinx = eix −e−ix

2i , we have

z = e−inx

[
a0 +

n−1∑
k=1

{(ak + bk

2

)
ei(n+k)x +

(ak − bk

2

)
ei(n−k)x

}
+ βei2nx + α

]
,

where ak+bk
2 ,

ak−bk
2 , α0, β ∈ R, α ∈ Q. Since z is an arbitrary, every element of T ′

2 is of the form

e−inx P(eix ), n ∈ N, where P(X) ∈ Q+XR[X ].

Conversely, for α0 ∈ Q and αk ∈ R, 1 ≤ k ≤ 2n, we have

e−inx P(eix ) = α0e−inx + α2neinx +
n−1∑
k=1

(
αke−i(n−k)x + α2n−k ei(n−k)x ) + αn.

As eix = Cosx + iSinx , we have

e−inx P(eix ) = (α0 + α2n)Cosnx + i(α2n − α0))Sinnx

+
n−1∑
k=1

{(αk + α2n−k)Cos(n − k)x

+ i(α2n−k − αk))Sin(n − k)x} + αn,

where αn, α0 + α2n, α2n − α0, αk + α2n−k, α2n−k − αk ∈ R. Therefore every element which is

of the form e−inx P(eix ), n ∈ N, where P(X) ∈ Q+ XR[X ], is in T ′
2.

Conclusion 1. The consequence of above construction is: T ′
2 = {e−inx P(eix ), n ∈ N, where

P(X) ∈ Q + XR[X ]. So we have an isomorphism f : (Q + XR[X ])X −→ T ′
2 through the

substitution morphism X −→ eix . Therefore T ′
2 � (Q + XR[X ])X .

Theorem 1. The integral domain T ′
2 is an HFD having irreducible elements, up to units, trigono-

metric polynomials of the form Cosx + iSinx − a, where a ∈ R\{0}.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)



�

�

“main” — 2013/11/8 — 17:51 — page 177 — #5
�

�

�

�

�

�

EHSAN ULLAH and TARIQ SHAH 177

Proof. Since X is a prime in Q + XR[X ] [1, Example 1.8 (b)], so (Q + XR[X ])X is a local-

ization of Q + XR[X ] by a multiplicative system generated by a prime. Also Q + XR[X ] is an
HFD [2, Proposition 3.1]. Therefore (Q + XR[X ])X is an HFD [1, Corollary 2.5]. Hence the
isomorphism T ′

0 � (Q + XR[X ])X in Conclusion 1 gives the result. �

2.2 The Construction of T ′
3

We define the set T ′
0 of all polynomials of the form

n∑
k=0

(ak Coskx + bk Sinkx), n ∈ N, ak, bk ∈ C and

an = α + γ + iβ, bn = −β + i(α − γ ),

such that α, β ∈ R, γ ∈ Q, where α, β and γ are not simultaneously zero.

Let z ∈ T ′
3 be an arbitrary element, so we may write

z = a0 +
n−1∑
k=1

(akCoskx + bk Sinkx) + {
(α + γ + iβ)Cosnx + (−β + i(α − γ ))Sinnx

}
.

As Cosx = eix+e−ix

2 and Sinx = eix −e−ix

2i , so

z = a0 +
n−1∑
k=1

{(a′
k + b′′

k + i(a′′
k − b′

k)

2

)
eikx +

(a′
k − b′′

k + i(a′′
k + b′

k)

2

)
e−ikx

}

+ (α + iβ)einx + γ e−inx ,

where ak = a′
k + ia′′

k , bk = b′
k + ib′′

k and a′
k , a′′

k , b′
k , b′′

k ∈ R, a0 ∈ C.

Setting

α′
k = a′

k + b′′
k + i(a′′

k − b′
k)

2
and β ′

k = a′
k − b′′

k + i(a′′
k + b′

k)

2
,

we have

z = e−inx

[
a0einx +

n−1∑
k=1

{
α′

kei(n+k)x + β ′
k ei(n−k)x } + (α + iβ)ei2nx + γ

]
,

where α′
k , β ′

k , a0 ∈ C, and α, β ∈ R, γ ∈ Q.

Since z is an arbitrary, every element of T ′
3 is of the form

e−inx P(eix ), n ∈ N, where P(X) ∈ Q + XC[X ].

Conversely, for α0 ∈ Q and αk ∈ C, 1 ≤ k ≤ 2n, we have

e−inx P(eix ) = α0e−inx + α2neinx +
n−1∑
k=1

(αke−i(n−k)x + α2n−k ei(n−k)x ) + αn.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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As eix = Cosx + iSinx , so by setting

αk = α′
k + iα′′

k , α2n−k = α′
2n−k + iα′′

2n−k and α2n = α′
2n + iα′′

2n .

We have

e−inx P(eix ) = (α0 + α′
2n + iα′′

2n)Cosnx + (−α′′
2n + i(α′

2n − α0))Sinnx

+
n−1∑
k=1

{(α′
k + α′

2n−k + i(α′′
k + α′′

2n−k))Cos(n − k)x

+ (α′′
k − α′′

2n−k + i(α′
2n−k − α′

k))Sin(n − k)x} + αn.

= anCosnx + bn Sinnx +
n−1∑
k=1

{
akCos(n − k)x + bk Sin(n − k)x

} + αn,

where

an = α0 + α′
2n + iα′′

2n , bn = −α′′
2n + i(α′

2n − α0),

ak = α′
k + α′

2n−k + i(α′′
k + α′′

2n−k ) and bk = α′′
k − α′′

2n−k + i(α′
2n−k − α′

k).

Therefore every element which is of the form e−inx P(eix ), n ∈ N, where P(X) ∈ Q + XC[X ],
is in T ′

3.

Conclusion 2. The consequence of above construction is: T ′
3 = {

e−inx P(eix ), n ∈ N, where
P(X) ∈ Q + XC[X ]}. So we have an isomorphism f : (Q + XC[X ])X −→ T ′

3 through the
substitution morphism X −→ eix . Therefore T ′

3 � (Q + XC[X ])X .

Theorem 2. The integral domain T ′
3 is an HFD having irreducible elements, up to units, trigono-

metric polynomials of the form Cosx + iSinx − a, where a ∈ C\{0}.

Proof. Since X is a prime in Q+XC[X ] [1, Example 1.8 (b)], so (Q+XC[X ])X is a local-
ization of Q+XC[X ] by a multiplicative system generated by a prime. Also Q+XC[X ] is an

HFD [2, Proposition 3.1]. Therefore (Q+XC[X ])X is an HFD [1, Corollary 2.5]. Now use the
isomorphism T ′

3 � (Q+XC[X ])X in Conclusion 2. �

2.3 The Construction of T ′
4

Consider the set T ′
4 of polynomials of the form

n∑
k=0

(ak Coskx + bk Sinkx), n ∈ N, ak, bk ∈ C and

an = (α + γ ) + i(β + δ), bn = (δ − β) + i(α − γ ),

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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such that α, β ∈ R, γ, δ ∈ Q, where α, β, γ and δ are not simultaneously zero. Let z ∈ T ′
4 be an

arbitrary element, so we may write it as

z = a0 +
n−1∑
k=1

(ak Coskx + bk Sinkx)

+ {(
(α + γ ) + i(β + δ)

)
Cosnx + (

(δ − β) + i(α − γ )
)
Sinnx

}
.

As Cosx = eix+e−ix

2 and Sinx = eix −e−ix

2i , so

z = a0 +
n−1∑
k=1

{(a′
k + b′′

k + i(a′′
k − b′

k)

2

)
eikx +

(a′
k − b′′

k + i(a′′
k + b′

k)

2

)
e−ikx

}

+ (α + iβ)einx + (γ + iδ)e−inx ,

where ak = a′
k + ia′′

k , bk = b′
k + ib′′

k and a′
k , a′′

k , b′
k , b′′

k ∈ R, a0 ∈ C.

Setting

α′
k = a′

k + b′′
k + i(a′′

k − b′
k)

2
and β ′

k = a′
k − b′′

k + i(a′′
k + b′

k)

2
,

we have

z = e−inx

[
a0einx +

n−1∑
k=1

{α′
kei(n+k)x + β ′

kei(n−k)x } + (α + iβ)ei2nx + (γ + iδ)

]
,

where α′
k , β ′

k , a0 ∈ C, and α, β ∈ R, γ, δ ∈ Q.

Since z is an arbitrary, every element of T ′
4 is of the form

e−inx P(eix ), n ∈ N, where P(X) ∈ Q(i) + XC[X ].

Conversely, for α0 ∈ Q(i) and αk ∈ C, 1 ≤ k ≤ 2n, consider

e−inx P(eix ) = α0e−inx + α2neinx +
n−1∑
k=1

(
αke−i(n−k)x + α2n−k ei(n−k)x ) + αn.

As eix = Cosx + iSinx , so for

α0 = α′
0 + iα′′

0 , αk = α′
k + iα′′

k , α2n−k = α′
2n−k + iα′′

2n−k and α2n = α′
2n + iα′′

2n .

We have

e−inx P(eix ) = (α0 + α′
2n + i(α′′

0 + α′′
2n))Cosnx + (α′′

0 − α′′
2n + i(α′

2n − α0))Sinnx

+
n−1∑
k=1

{(α′
k + α′

2n−k + i(α′′
k + α′′

2n−k))Cos(n − k)x

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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+ (α′′
k − α′′

2n−k + i(α′
2n−k − α′

k))Sin(n − k)x} + αn.

= anCosnx + bn Sinnx +
n−1∑
k=1

{akCos(n − k)x + bk Sin(n − k)x} + αn,

where

an = α0 + α′
2n + i(α′′

0 + α′′
2n), bn = α′′

0 − α′′
2n + i(α′

2n − α0),

ak = α′
k + α′

2n−k + i(α′′
k + α′′

2n−k ) and bk = α′′
k − α′′

2n−k + i(α′
2n−k − α′

k).

Therefore every element which is of the form e−inx P(eix ), n ∈ N, where P(X) ∈ Q(i)+XC[X ],
is in T ′

4.

Conclusion 3. The consequence of above construction is: T ′
4 = {e−inx P(eix ), n ∈ N, where

P(X) ∈ Q(i) + XC[X ]}. So once again we have an isomorphism f : (Q(i) + XC[X ])X −→ T ′
4

through the substitution morphism X −→ eix . Therefore T ′
4 � (Q(i) + XC[X ])X .

Theorem 3. The integral domain T ′
4 is an HFD having irreducible elements, up to units, trigono-

metric polynomials of the form Cosx + iSinx − a, where a ∈ C\{0}.

Proof. The proof follows analogous to Theorem 1 and 2. �

The following is the analogue of [15, Corollary 2.2] and gives the factorization in T ′
4 instead

of T ′.

Corollary 1. Let z =
n∑

k=0
(akCoskx + bk Sinkx), n ∈ N\{1}, ak, bk ∈ C with (an , bn) �= (0, 0),

such that an = (α + γ ) + i(β + δ) and bn = (δ − β) + i(α − γ ), where α, β ∈ R, γ, δ ∈ Q.
Let d be a common divisor of the integers k such that (ak, bk) �= (0, 0). Then z has a unique

factorization

λ(Cosnx − iSinnx)

2n
d∏

j=1

(Cosdx + iSindx − α j ), where λ, α j ∈ C\{0}.

Proof. Since T ′
4 ⊆ T ′, therefore proof follows by [15, Corollary 2.2]. �

Remark 1. The factorization in T ′
2 and T ′

3 is an analogue of Corollary 1.

Now onwards the symbol ∩ in all diagrams will represent the inclusion ⊆.

Remark 2. Consider the following ascending chain of substructures of C[X ]

Q+XR[X ] ⊆ Q+XC[X ] ⊆ Q(i)+XC[X ] ⊆ C[X ],

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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where Q+XR[X ], Q+XC[X ] and Q(i)+XC[X ] are HFDs, whereas C[X ] is a Euclidean do-

main. The localization of all these four by a multiplicative system generated by X preserves their
factorization properties.

Q+ XR[X ] ⊆ Q+ XC[X ] ⊆ Q(i) + XC[X ] ⊆ C[X ]
∩ ∩ ∩ ∩

(Q + XR[X ])X ⊆ (Q + XC[X ])X ⊆ (Q(i) + XC[X ])X ⊆ C[X ]X .

Using Conclusion 1, Conclusion 2, Conclusion 3 and [15, Theorem 2.1], we have

Q+ XR[X ] ⊆ Q+ XC[X ] ⊆ Q(i) + XC[X ] ⊆ C[X ]
∩ ∩ ∩ ∩
T ′

2 ⊆ T ′
3 ⊆ T ′

4 ⊆ T ′,

where T ′
2, T ′

3, T ′
4 are HFDs contained in the Euclidean domain T ′. So we can see that there is a

ascend of factorization properties for each of these four structures.

Remark 3. Due to the domain extensions

Q + XR[X ] ⊆ (Q + XR[X ])X , Q+ XC[X ] ⊆ (Q + XC[X ])X

Q(i) + XC[X ] ⊆ (Q(i) + XC[X ])X and C[X ] ⊆ (C[X ])X ,

we obtain the following four extended ideals.

1. Consider the domain extension C[X ] ⊆ (C[X ])X . Since XC[X ] is a maximal ideal of

C[X ] and XC[X ] ∩ (X) �= φ, the extended ideal (XC[X ])e = (C[X ])X [25, Corollary 2].
Hence (XC[X ])e � T ′ by [15, Theorem 2.1].

2. If we consider the domain extension Q + XR[X ] ⊆ (Q + XR[X ])X , we observe that

XR[X ] is a maximal ideal of R[X ] and XR[X ] ∩ (X) �= φ. Therefore the extended ideal
(XR[X ])e = (Q + XR[X ])X [25, Corollary 2]. Hence (XR[X ])e � T ′

2 by Conclusion 1.

3. Analogous to (2) we have (XC[X ])e � T ′
3 using Conclusion 2, since XC[X ] is a maximal

ideal of C[X ] for the domain extension Q + XC[X ] ⊆ (Q + XC[X ])X .

4. Once again analogous to (2) and (3) we have (XC[X ])e � T ′
4 using Conclusion 3, since

XC[X ] is a maximal ideal of C[X ] for the domain extension Q(i) + XC[X ] ⊆ (Q(i) +
XC[X ])X .

Definition 1. We denote the set T ′
2 for α = 0 by I2 and is defined as

I2 =
{ n∑

k=0

(akCoskx + ibk Sinkx) : n ∈ N, ak, bk ∈ R and an = bn = β

}
.
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Definition 2. We denote the set T ′
3 for γ = 0 by I3 and is defined as

I3 =
{ n∑

k=0

(akCoskx + bk Sinkx) : n ∈ N, ak, bk ∈ C and an = α + iβ, bn = −β + iα

}
.

Definition 3. We denote the set T ′
4 for γ = δ = 0 by I4 and is defined as

I4 =
{ n∑

k=0

(akCoskx + bk Sinkx) : n ∈ N, ak, bk ∈ C and an = α + iβ, bn = −β + iα

}
.

Remark 4. By Definition 2 and Definition 3, we have I3 = I4, so onwards we use I to denote

I3 and I4.

Lemma 1. For the maximal ideal XR[X ] (respectively XC[X ]) of Q+XR[X ] (respectively of
Q+XC[X ] andQ(i)+XC[X ]), we have (XR[X ])X � I2 (respectively (XC[X ])X � I ).

Proof. Follows by Conclusion 1 (respectively Conclusion 2 and Conclusion 3). �

3 CONDITIONS SATISFIED BY TRIGONOMETRIC POLYNOMIAL RING
EXTENSIONS

In this section we study two special conditions among trigonometric polynomial ring extensions.
First one known as Condition 1, is borrowed from [16, page 661] and the second one is borrowed
from [20]. We denote the group of units of a ring B by U (B).

Condition 1. Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist
x ′ ∈ U (B) and x ′′ ∈ A such that x = x ′x ′′.

Example 1. Following [16, Example 1.1].

a) If the ring extension A ⊆ B satisfies Condition 1, the ring extension A + X B[X ] ⊆ B[X ]
(or A + X B[[X ]] ⊆ B[[X ]]) also satisfies Condition 1.

b) If the ring extensions A ⊆ B and B ⊆ C satisfy Condition 1, so does the ring extension
A ⊆ C.

c) If B is a fraction ring of A, the ring extension A ⊆ B satisfies Condition 1. Hence the ring

extension A ⊆ B satisfying Condition 1 is a generalization of localization.

d) If B is a field, the ring extension A ⊆ B satisfies Condition 1.

Condition 2. Let A ⊆ B be a unitary (commutative) ring extension and let A1 ⊆ B1 be a unitary
(commutative) ring extension where A ⊆ A1 and B ⊆ B1. Then for each x ∈ B1 there exist

x ′ ∈ U (B) and x ′′ ∈ A1 such that x = x ′x ′′.

Lemma 2. Let A ⊆ B be a unitary (commutative) ring extension which satisfies Condition 1. If
N is a multiplicative system in A then the ring extension N−1 A ⊆ N−1 B satisfies Condition 2.
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Proof. Since the ring extension A ⊆ B satisfies Condition 1, for each a ∈ B there exist

b ∈ U (B) and c ∈ A such that a = bc. Obviously N−1 A ⊆ N−1B. Let x = a
s ∈ N−1B. Then

x = a
s , a ∈ B, s ∈ N . This implies x = bc

s = b c
s , where b ∈ U (B) and c

s ∈ N−1 A. �

The converse of Lemma 2 does not hold in general. The following proposition addresses this
fact.

Proposition 1. Let A ⊆ B be a unitary (commutative) ring extension. Let the domain extension

A1 ⊆ B1satisfies Condition 2 and the domain extension A ⊆ A1 satisfies Condition 1, where
A ⊆ A1 and B ⊆ B1. If U (B1) = U (B) and U (B1) ∩ A1 = U (A1). Then the domain extension
A ⊆ B satisfies Condition 1.

Proof. Since the domain extension A1 ⊆ B1 satisfies Condition 2, for each x ∈ B ⊆ B1 there

exist x ′
1 ∈ U (B) and x ′′

1 ∈ A1 such that x = x ′
1x ′′

1 . Now if x ′′
1 ∈ A, there is nothing to prove. If

x ′′
1 ∈ A1\A, we proceed as follows. Since the domain extension A ⊆ A1 satisfies Condition 1,

for x ′′
1 ∈ A1 there exist x ′

2 ∈ U (A1) and x ′′
2 ∈ A such that x ′′

1 = x ′
2x ′′

2 . It follows that x = x ′
1x ′

2x ′′
2 .

As U (B1) = U (B) and U (B1) ∩ A1 = U (A1), so x ′
1x ′

2 ∈ U (B) and x ′′
2 ∈ A. Therefore A ⊆ B

satisfies Condition 1. �

Proposition 2. Let A ⊆ B ⊆ B1 be a unitary (commutative) ring extension. Assume that the
domain extension A ⊆ B1 satisfies Condition 2. Then the domain extension A ⊆ B satisfies

Condition 1.

Proof. The domain extension A ⊆ B1 satisfies Condition 2, so for each x ∈ B ⊆ B1 there exist
x ′ ∈ U (B) and x ′′ ∈ A such that x = x ′x ′′. Therefore A ⊆ B satisfies Condition 1. �

Example 2. Let A ⊆ B be a unitary (commutative) ring extension. Let N = U (A) is a multi-
plicative system in A. Assume that the domain extension N−1 A ⊆ N−1B satisfies Condition 2.

Then the domain extension A ⊆ B satisfies Condition 1.

Example 3. Some more interesting examples satisfying Condition 1 are as follows.

(a) If the ring extensions A ⊆ B and B ⊆ C satisfy Condition 2, so does the ring extension

A ⊆ C.

(b) For A = A1 and B = B1 the Condition 1 and Condition 2 coincides.

(c) If the ring extension A1 ⊆ B1 satisfies Condition 2, it does satisfies Condition 1.

(d) By Lemma 2, the ring extensions T ′
2 ⊆ T ′

3, T ′
3 ⊆ T ′

4, and T ′
4 ⊆ T ′ satisfy Condition 2 so

do the ring extensions T ′
2 ⊆ T ′

4, T ′
2 ⊆ T ′, and T ′

3 ⊆ T ′.
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3.1 Conclusion

Consider the commutative inclusion diagram due to Remark 2.

Q+ XR[X ] ⊆ Q+ XC[X ] ⊆ Q(i) + XC[X ] ⊆ C[X ]
∩ ∩ ∩ ∩
T ′

2 ⊆ T ′
3 ⊆ T ′

4 ⊆ T ′

The following table concludes our discussion on Condition 1 and Condition 2 among trigono-
metric polynomial ring extensions.

Ring Extension Condition 1 Condition 2

Q+ XC[X] ⊆ C[X] Yes Yes

Q(i) + XC[X] ⊆ C[X] Yes Yes

Q+ XR[X] ⊆ T ′
2 Yes Yes

Q+ XR[X] ⊆ T ′
3 Yes Yes

Q+ XR[X] ⊆ T ′
4 Yes Yes

C[X] ⊆ T ′ Yes Yes

T ′
2 ⊆ T ′

3 No Yes

T ′
3 ⊆ T ′

4 No Yes

T ′
4 ⊆ T ′ No Yes

Q+ XR[X] ⊆ T ′
3 No Yes

Q+ XC[X] ⊆ T ′
4 No Yes

Q(i) + XC[X] ⊆ T ′ No Yes

T ′
2 ⊆ T ′

4 No Yes

T ′
2 ⊆ T ′ No Yes

T ′
3 ⊆ T ′ No Yes

Q+XR[X] ⊆ Q+XC[X] No No

Q+XC[X] ⊆ Q(i)+XR[X] No No

Note that the extensions Q + XR[X ] ⊆ T ′
3, Q + XC[X ] ⊆ T ′

4, Q(i) + XC[X ] ⊆ T ′, T ′
2 ⊆ T ′

4,

T ′
2 ⊆ T ′ and T ′

3 ⊆ T ′ satisfy Condition 2 due to transitivity.

3.2 Future Work and Applications

It is exciting that at the close of this paper, there are still some directions for future research
work. In polynomial rings, factorization properties of integral domains have been a frequent

topic of recent mathematical literature but the study of factorization properties in trigonometric
polynomials is not addressed that much. So it seems to be really interesting to investigate factor-
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ization properties of trigonometric polynomial rings and this can open a new challenge for the

researchers.

In addition to the applications mentioned in the introduction, we would like to highlight an ap-
plication of trigonometric polynomials in symbolic computation. In [13], J. Mulholland and
M. Monagan presented algorithms for simplifying ratios of trigonometric polynomials and algo-

rithms for dividing, factoring and computing greatest common divisors of trigonometric polyno-
mials. The provided algorithms do not always lead to the simplest form. A possible direction of
study could be to provide enough general algorithms for finding a simplest form.
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RESUMO. Polinômios trigonométricos são amplamente utilizados em diferentes áreas de

engenharia e ciências. Inspirado por suas aplicações, investigamos domı́nios semi-fatorial em

anéis de polinômios trigonométricos. Nós construı́mos o domı́nios semi-fatoriais T ′
2, T ′

3 e

T ′
4 que são os subanéis do anel de complexos, polinômios trigonométricas T ′, de tal forma

que T ′
2 ⊆ T ′

3 ⊆ T ′
4 ⊆ T ′. Discutimos, também, entre estes três subanéis a Condição: Seja

A ⊂ B ser uma extensão unitária (comutativa) do anel. Para cada x ∈ B existem x′ ∈ U(B)

e x′′ ∈ A tal que x = x′x′′, onde U(B) é o grupo de unidades de B .

Palavras-chave: polinômios trigonométricos, HFD, condição 1, condição 2, irredutı́vel.
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