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1. Introdution

Sine the appearane of the geometri Goppa odes in the eighties, many papers

have dealt with improvements on the lower bound for the minimum distane of a

ode. One of the most suessful methods for this improvement was obtained by

Feng and Rao (see [6℄ and [7℄). Many related bounds appeared after their work,

one of them being a bound derived by Andersen and Geil in [1℄. In that paper the

authors �rst derive a general approah to obtain a bound for the minimum distane

(atually, for the generalized Hamming weights) of a linear ode, and then show

how to apply their method to odes de�ned from weight domains. A weight domain

is an F-algebra, where F is a �eld, whih admits a funtion to N0∪{−∞} satisfying
ertain properties, whih makes the domain suitable to be used for de�ning odes,

when F is a �nite �eld. They were introdued in [12℄ by T. Høholdt, J. H. van Lint

and R. Pellikaan in order to present an alternative onstrution for geometri Goppa

odes with simple tools from ommutative algebra. In the present work we show

how to apply Andersen and Geil's general approah to a�ne variety odes. Similarly

to odes obtained from weight domains, these are evaluation odes obtained from

the ring of regular funtions of an a�ne variety but weight funtions play no role in

this theory. Sine the algebras whih appear in the weight funtion theory are the

ring of regular funtions of ertain type of variety (see [11℄) our result applies to a

more omprehensive lass of rings (see Example 3.2). Thus, distintly from reent

works (see e.g. [9℄ and [10℄) we do not need onepts like �well-behaving basis� or

�one-way well behaving basis�. An important set of data to obtain a bound for
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the minimum distane is the set of indexes where there is a �dimension jump� in a

sequene of nested vetor spaes. While in [1℄ there are several results on suh set

for the ase of odes from weight domains, and in partiular, one-point geometri

Goppa odes, here we show that this set may be read diretly from the footprint of

an ideal obtained by enlarging the de�ning ideal of the urve.

In the next setion we reall Andersen and Geil's approah to obtain a bound

for the minimum distane of a linear ode, we introdue the a�ne variety odes

and reall the de�nition and some properties of the footprint of an ideal, then we

prove our main result. Following that, we present some examples to illustrate our

method, inluding odes obtained from an algebra whih does not admit a weight

funtion.

2. Main result

Let Fq be a �nite �eld with q elements, n a positive integer and for a := (a1, . . . , an),
b := (b1, . . . , bn) ∈ Fn

q de�ne a ∗ b := (a1b1, . . . , anbn). Let C be a vetor subspae

of Fn
q . The idea of Andersen and Geil for �nding a lower bound for the minimum

distane of C stems from the fat that if c ∈ C and {b1, . . . ,bn} =: B is a basis for

Fn
q then the subspae c ∗B generated by {c ∗ b1, . . . , c ∗ bn} has dimension equal

to the weight of c. Thus we have the following result, whih is not expliitly stated

in [1℄ but is used there.

Lemma 2.1. The minimum distane d(C) is equal to min{dim c∗B ; c ∈ C \ {0}}.

We will use this result to estimate the minimum distane of the so-alled a�ne

variety odes, whih were introdued by J. Fitzgerald and R. F. Lax in [8℄. Let

I ⊂ Fq[X1, . . . , Xm] be an ideal, let VFq
(I) = {P1, . . . , Pn} be the assoiated variety

of Fq-rational points and set R := Fq[X1, . . . , Xm]/I. Consider the evaluation

morphism ϕ : R → Fn
q given by f + I 7→ (f(P1), . . . , f(Pn)) and let L be an

Fq-vetor subspae of R.

De�nition 2.1. The a�ne variety ode C(L) is the image ϕ(L).

We observe that as an Fq-vetor spae R may not have �nite dimension. A

useful way of �nding a basis for R is by means of the so-alled footprint an ideal.

De�nition 2.2. Assume that Fq[X1, . . . , Xm] is endowed with a monomial order

4. The footprint of I (with respet to 4), denoted by ∆(I), is the set of monomials
whih are not leading monomials of any polynomial in I.

Let α = (α1, . . . , αm) ∈ Nm
0 (where N0 is the set of nonnegative integers), we

will denote by Mα the monomial Xα1

1
. · · · .Xαm

m . Then the map Mα 7→ α gives a

bijetion between the set of monomials of Fq[X1, . . . , Xm] and Nm
0 . Denote by Λ the

subset of Nm
0

orresponding to the monomials whih are not leading monomials of

any polynomial in I with respet to a monomial order 4. Then ∆(I) = {Mλ | λ ∈
Λ} is the footprint of I (with respet to 4). One of the main properties of ∆(I)
is that {Mλ + I | λ ∈ Λ} is a basis for R as an Fq-vetor spae (see e.g. [5, Prop.

4, § 3, Ch. 5℄), and we observe that it is a basis whih already arries an order.
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Thus, for eah λ ∈ Λ we onsider the Fq-subspae Lλ ⊂ R whih is generated by

all monomials in ∆(I) whih are less or equal than Mλ. Clearly, if Mσ 4 Mλ then

Lσ ⊆ Lλ, so that C(Lσ) ⊆ C(Lλ). The next result shows for whih values of λ we

get C(Lσ) $ C(Lλ).

Theorem 2.1. Let Iq := I + (Xq
1
− X1, . . . , X

q
m − Xm). Then dimC(Lλ) >

dimC(Lσ) (with Mλ ≻ Mσ) if and only if Mλ ∈ ∆(Iq).

Proof. Observe initially that sine I ⊂ Iq then ∆(Iq) ⊂ ∆(I), so that the laim

makes sense. Denote by Fq an algebrai losure of Fq, learly we have VFq
(I) =

VFq
(Iq) and denoting by VFq

(Iq) ⊂ Fq
m
the variety of Iq as an ideal of Fq[X1, . . . , Xm]

we also get VFq
(Iq) = V

Fq
(Iq) (onsidering the natural inlusion Fq

m ⊂ Fq
m
). From

Seidenberg's Lemma 92 (see [16℄ or [2, Lemma 8.13℄) we get that Iq is a radial

ideal, so from [2, Thm. 8.32℄ we get that R/Iq is an Fq-vetor spae of �nite di-

mension #V
Fq
(Iq), and sine the lasses of the monomials in ∆(Iq) form a basis

for R/Iq we get #∆(Iq) = n, where n = #(VFq
(I)). We will prove now that if

Mλ ∈ ∆(Iq) then dimC(Lλ) > dimC(Lσ) for any Mσ ≺ Mλ. Assume that it

is not the ase, so there exists σ with Mσ ≺ Mλ suh that C(Lλ) = C(Lσ). In

partiular, there exists a nonzero �nite linear ombination

∑

Mσ′4Mσ
aσ′Mσ′ ∈ Lσ

suh that (
∑

Mσ′4Mσ
aσ′Mσ′)(Pi) = Mλ(Pi) for all i = 1, . . . , n. From Hilbert's

Nullstellensatz (see e.g. [5, Thm. 2, §1, Ch. 4℄) we get that the polynomial Mλ −
∑

Mσ′4Mσ
aσ′Mσ′

is in

√

Iq = Iq and a fortiori Mλ /∈ ∆(Iq), a ontradition. This

ompletes the proof of the �if� assertion, for the �only if� part observe that the

dimension of the spaes dimC(Lλ) may jump from 1 to n at most n− 1 times, but

we just proved that it will jump n− 1 times, so every jump must orrespond to an

element of ∆(Iq).

From the (proof of the) above theorem we get the following result.

Corollary 2.1.1. Let ∆(Iq) := {Mλ1
, . . . ,Mλn

}, then {ϕ(Mλ1
), . . . , ϕ(Mλn

)} is a

basis for Fn
q , where n = #(VFq

(I)).

For simpliity we will denote by M1, . . . ,Mn the elements of ∆(Iq) and we

assume that M1 < · · · < Mn. We now show how to use the above results to �nd

a lower bound for the minimum distane of an a�ne variety ode C ⊂ Fn
q . Let

{c1, . . . , cℓ} be a basis for C, and denote by B := {b1, . . . ,bn} the (ordered) basis

for Fn
q where bi = ϕ(Mi + I), i = 1, . . . , n. For all t ∈ {1, . . . , ℓ} and i ∈ {1, . . . , n}

write ct ∗ bi as a linear ombination of the elements in B. One way to do this is

to write ct = ϕ(f + I) for some f ∈ Fq[X1, . . . , Xm], so that ct ∗ bi = ϕ(fMi + I).
Now observe that if Rti is the remainder in the division of ct ∗bi by a Gröbner basis

of Iq (with respet to �) then Rti is a linear ombination of the elements in ∆(Iq)
and the evaluation of fMi at the points of VFq

(I) = VFq
(Iq) oinides with the

evaluation of Rti at these points, whih produes the desired linear ombination.

Let Γti ⊂ ∆(Iq) denote the set of monomials Mj suh that the oe�ient of bj

in that linear ombination is not zero. Let Mti be the greatest element in Γti.

We want to �nd a lower bound for the weight of words of the type c =
∑t

i=1
aici

with a1, . . . , at ∈ Fq and at 6= 0. For this we de�ne Dt := {Mt1} and then for all
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i = 2, . . . , n we add Mti to the set Dt if Msi ≺ Mti for all 1 ≤ s < t. We laim

that the weight of c satis�es w(c) ≥ #(Dt). In fat, let v = #(Dt), then the v × n
matrix A whose lines are the oordinates of the vetors c ∗ bi1 , . . . , c ∗ biv in the

base B has a v × v invertible minor. To see this, let Mti1 , . . . ,Mtiv be the distint

elements of Dt, then for eah j ∈ {1, . . . , v} we have Mtij = Mλj
∈ ∆(Iq), and from

the onstrution of Dt we get that in the j-th line of A the λj-th entry is nonzero

and all entries after it are equal to zero. This proves that w(c) ≥ #(Dt), so the

minimum distane of C is lower bounded by min{#(Dt) | t = 1, . . . , dim(C)}.

The above method applies to any a�ne variety ode in Fn
q but to simplify the

alulations in the following examples we use odes whih are generated by some

vetors of the base B indued by ∆(Iq). These examples also show that the method

an yield sharp bounds, and may be applied to odes whih do not ome from

evaluation order domains.

3. Examples

Example 3.1. For the �rst example we take the hermitian urve given by Y 3 +
Y − X4 = 0, de�ned over F9. Codes over this urve has been studied extensively,

and the minimum distane of one point geometri Goppa odes has been deter-

mined by Stihtenoth ([17℄) and Yang and Kumar ([18℄). Building on the experiene

of those who have dealt with these odes we hoose a weighted lexiographi order

for F9[X,Y ] by stating that XaY b 4 Xa′

Y b′
if and only if 3a + 4b ≤ 3a′ + 4b′,

and if equality holds then XaY b <lex Xa′

Y b′
(with Y <lex X). These weights

ome from the pole orders of the rational funtions x = X/Z and y = Y/Z at

the point at in�nity P∞ := (0 : 1 : 0), whih is their only pole. Using CoCoA

([4℄) or Maaulay2 ([13℄) we may alulate a Gröbner basis for the ideal I9 :=
(Y 3 + Y − X4, Y 9 − Y,X9 − X) with respet to 4, whih is {Y 3 + Y − X4, Y 9 −
Y,XY 6 − XY 4 + XY 2 − X} and from that we get that the footprint of I9 (w.r.t.

4) is ∆(I9) = {XaY b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 5} ∪ {Y 6, Y 7, Y 8}. The urve has

27 rational points (in the a�ne plane), whih is the same number of elements in

the footprint, as expeted from the proof of theorem 2.1. When we order the mono-

mials in ∆(I9) we get {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3, X3Y,X2Y 2, XY 3,
Y 4, X3Y 2, X2Y 3, XY 4, Y 5, X3Y 3, X2Y 4, XY 5, Y 6, X3Y 4, X2Y 5, Y 7, X3Y 5, Y 8} so
denoting by Mi the i-th monomial in ∆(Iq) we get that {bi := ϕ(Mi + I) | i =
1, . . . , 27} is a basis for F27

9
. Let C be the ode generated by the evaluation of (the

lass of) the �rst 5 elements of the basis, namely, C = 〈b1, . . . ,b5〉. We start

by �nding a lower bound for the weight of odewords of the type c =
∑5

i=1
aibi,

where a1, . . . , a5 ∈ F9 and a5 6= 0. Following the proedure (and the notation) de-

sribed at the end of the last setion, sine b1 = ϕ(1 + I) we must set D5 = {XY }
to start. Then, from c5 ∗ b2 = ϕ(XY + I) ∗ ϕ(X + I) = ϕ(X2Y + I) = b8,

c4 ∗ b2 = ϕ(X3 + I) = b7, c3 ∗ b2 = b5, c2 ∗ b2 = b4 and c1 ∗ b2 = b2

we must add X2Y to D5 obtaining D5 = {XY,X2Y }. Atually, sine for any

N ∈ {1, X, Y,X2, XY } and M ∈ M := {XaY b | 0 ≤ a ≤ 1, 0 ≤ b ≤ 4} we have

NM ∈ ∆(Iq) and also M ≺ XM ≺ YM ≺ X2M ≺ XYM , then we must add

XYM to D5 for all M ∈ M, so that (so far) #(D5) = 10 . We get ten other
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elements to be added to D5 from the tables below

Remainder in the division of ci ∗ bj by the Gröbner basis of Iq

b4 = X2
b7 = X3

b8 = X2Y b11 = X3Y b12 = X2Y 2

XY X3Y Y 4 + Y 2 X3Y 2 Y 5 + Y 3 X3Y 3

X2 Y 3 + Y XY 3 +XY Y 4 + Y 2 XY 4 +XY 2 Y 5 + Y 3

Y X2Y X3Y X2Y 2 X3Y 2 X2Y 3

X X3 Y 3 + Y X3Y Y 4 + Y 2 X3Y 2

1 X2 X3 X2Y X3Y X2Y 2

Remainder in the division of ci ∗ bj by the Gröbner basis of Iq

b15 = X3Y 2
b16 = X2Y 3

b19 = X3Y 3
b20 = X2Y 4

b23 = X3Y 4

XY Y 6 + Y 4 X3Y 4 Y 7 + Y 5 X3Y 5 Y 8 + Y 6

X2 XY 5 +XY 3 Y 6 + Y 4 −XY 4 −XY 2 +X Y 7 + Y 5 −XY 5 −XY 3 +XY

Y X3Y 3 X2Y 4 X3Y 4 X2Y 4 X3Y 4

X Y 5 + Y 3 X3Y 3 Y 6 + Y 4 X3Y 4 Y 7 + Y 5

1 X3Y 2 X2Y 3 X3Y 3 X2Y 4 X3Y 4

whih are {X3Y, Y 4, X3Y 2, Y 5, X3Y 3, Y 6, X3Y 4, Y 7, X3Y 5, Y 8}, so that now #(D5) =
20. The produt of the elements in the basis of C with b18,b21,b22,b24,b25,b26

and b27 will not yield any monomial to be added to D5; for example, the remainders

in the division of c1 ∗ b25, c2 ∗ b25, c3 ∗ b25, c4 ∗ b25 and c5 ∗ b25 by the Gröbner

basis of I9 are respetively Y 7, XY 5 −XY 3 + XY, Y 8, X2Y 5 − X2Y 3 + X2Y and

X, so we annot add X to D5 (beause, for instane, X ≺ Y 8
). Likewise, we om-

pute #(D4), #(D3), #(D2) and #(D1) obtaining respetively 21, 22, 24 and 27.

Thus our bound for the minimum distane is 20 but this is the atual value of the

minimum distane, whih we may hek by observing that the ode orresponds to

the geometri Goppa ode generated by a basis of L(7P∞), see [17℄.

Example 3.2. In this example we deal with the a�ne urve de�ned over F9 by

the equation X6Y 4 +X8 + 1 = 0. Observe that the losure of the urve in P2(F9)
has two nonsingular points, namely, P1 := (0 : 1 : 0) and P2 := (1 : 0 : 0) so

R = F9[X,Y ]/(X6Y 4 + X8 + 1) is not a weight domain (see [14℄, see also [3℄ for

results on odes de�ned by means of near weight domains, whih inlude the ring

R). The pole divisor of the funtions x and y in the funtion �eld of the urve are

respetively, div∞(x) = 2P1+2P2 and div∞(y) = 5P1+5P2 (alulations done with

KASH/KANT - [15℄) so we hoose a weighted lexiographi order for F9[X,Y ] by
stating that XaY b 4 Xa′

Y b′
if and only if 2a+5b ≤ 2a′ +5b′, and if equality holds

then XaY b <lex Xa′

Y b′
(with Y <lex X). Using CoCoA ([4℄) or Maaulay2 ([13℄)

we may alulate a Gröbner basis for I9 = (X6Y 4+X8+1, Y 9−Y,X9−X) obtaining
{X4 − 1, Y 4 −X6} so that the footprint is ∆(I9) = {XaY b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3},
and we onlude that there are 16 rational points in the a�ne urve. Let C be the

ode generated by evaluating the lasses {1+I,X+I,X2+I, Y +I,X3+I,XY +I}
at the rational points in the a�ne plane (hene, from the above theorem we know
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that this ode has dimension 6). Observe that this is the geometri Goppa ode

generated by a base of L(7P1 + 7P2), or in other words, the geometri Goppa ode

assoiated with the divisors G = 7P1+7P2 and D, where D is the sum of all rational

points. Let f = a1 + a2X + a3X
2 + a4Y + a5X

3 + a6XY , with a1, . . . , a6 ∈ F9 and

let j ∈ {1, . . . , 6} be greatest index for whih aj 6= 0. Denoting by B the (ordered)

basis {ϕ(XaY b + I) | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3} of F16
9 and proeeding as in the example

above we see that ϕ(f + I) ∗B has dimension at least 9 (respetively, 4, 12, 8, 12,

16) if j = 6 (respetively, 5, 4, 3, 2, 1), so our bound for the minimum distane is

4, and one may hek that this is the atual bound. We also see that if we disard

X3
and onsider the ode generated by evaluating the lasses {1 + I,X + I,X2 +

I, Y + I,XY + I} at the rational points, then the bound for the minimum distane

is now 8, and again one may hek that this is the atual bound.
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Resumo. Nesse trabalho apresentamos um método para estimar a distânia mí-

nima de ódigos de variedades a�ns. Nossa ténia usa propriedades da pegada de

um ideal obtido através do aumento do ideal de de�nição da variedade em questão,

e também pode ser apliada a ódigos de que não são produzidos utilizando-se

domínios-pesos.

Palavras-have. Códigos de variedade a�m, bases de Gröbner, pegada de um

ideal, distânia mínima.
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