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Abstra
t. We present a method to estimate the minimum distan
e of a�ne vari-

eties 
odes. Our te
hnique uses properties of the footprint of an ideal obtained by

enlarging the de�ning ideal of the variety, and may be applied also to 
odes whi
h

do not 
ome from the so-
alled weight domains.
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1. Introdu
tion

Sin
e the appearan
e of the geometri
 Goppa 
odes in the eighties, many papers

have dealt with improvements on the lower bound for the minimum distan
e of a


ode. One of the most su

essful methods for this improvement was obtained by

Feng and Rao (see [6℄ and [7℄). Many related bounds appeared after their work,

one of them being a bound derived by Andersen and Geil in [1℄. In that paper the

authors �rst derive a general approa
h to obtain a bound for the minimum distan
e

(a
tually, for the generalized Hamming weights) of a linear 
ode, and then show

how to apply their method to 
odes de�ned from weight domains. A weight domain

is an F-algebra, where F is a �eld, whi
h admits a fun
tion to N0∪{−∞} satisfying

ertain properties, whi
h makes the domain suitable to be used for de�ning 
odes,

when F is a �nite �eld. They were introdu
ed in [12℄ by T. Høholdt, J. H. van Lint

and R. Pellikaan in order to present an alternative 
onstru
tion for geometri
 Goppa


odes with simple tools from 
ommutative algebra. In the present work we show

how to apply Andersen and Geil's general approa
h to a�ne variety 
odes. Similarly

to 
odes obtained from weight domains, these are evaluation 
odes obtained from

the ring of regular fun
tions of an a�ne variety but weight fun
tions play no role in

this theory. Sin
e the algebras whi
h appear in the weight fun
tion theory are the

ring of regular fun
tions of 
ertain type of variety (see [11℄) our result applies to a

more 
omprehensive 
lass of rings (see Example 3.2). Thus, distin
tly from re
ent

works (see e.g. [9℄ and [10℄) we do not need 
on
epts like �well-behaving basis� or

�one-way well behaving basis�. An important set of data to obtain a bound for
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the minimum distan
e is the set of indexes where there is a �dimension jump� in a

sequen
e of nested ve
tor spa
es. While in [1℄ there are several results on su
h set

for the 
ase of 
odes from weight domains, and in parti
ular, one-point geometri


Goppa 
odes, here we show that this set may be read dire
tly from the footprint of

an ideal obtained by enlarging the de�ning ideal of the 
urve.

In the next se
tion we re
all Andersen and Geil's approa
h to obtain a bound

for the minimum distan
e of a linear 
ode, we introdu
e the a�ne variety 
odes

and re
all the de�nition and some properties of the footprint of an ideal, then we

prove our main result. Following that, we present some examples to illustrate our

method, in
luding 
odes obtained from an algebra whi
h does not admit a weight

fun
tion.

2. Main result

Let Fq be a �nite �eld with q elements, n a positive integer and for a := (a1, . . . , an),
b := (b1, . . . , bn) ∈ Fn

q de�ne a ∗ b := (a1b1, . . . , anbn). Let C be a ve
tor subspa
e

of Fn
q . The idea of Andersen and Geil for �nding a lower bound for the minimum

distan
e of C stems from the fa
t that if c ∈ C and {b1, . . . ,bn} =: B is a basis for

Fn
q then the subspa
e c ∗B generated by {c ∗ b1, . . . , c ∗ bn} has dimension equal

to the weight of c. Thus we have the following result, whi
h is not expli
itly stated

in [1℄ but is used there.

Lemma 2.1. The minimum distan
e d(C) is equal to min{dim c∗B ; c ∈ C \ {0}}.

We will use this result to estimate the minimum distan
e of the so-
alled a�ne

variety 
odes, whi
h were introdu
ed by J. Fitzgerald and R. F. Lax in [8℄. Let

I ⊂ Fq[X1, . . . , Xm] be an ideal, let VFq
(I) = {P1, . . . , Pn} be the asso
iated variety

of Fq-rational points and set R := Fq[X1, . . . , Xm]/I. Consider the evaluation

morphism ϕ : R → Fn
q given by f + I 7→ (f(P1), . . . , f(Pn)) and let L be an

Fq-ve
tor subspa
e of R.

De�nition 2.1. The a�ne variety 
ode C(L) is the image ϕ(L).

We observe that as an Fq-ve
tor spa
e R may not have �nite dimension. A

useful way of �nding a basis for R is by means of the so-
alled footprint an ideal.

De�nition 2.2. Assume that Fq[X1, . . . , Xm] is endowed with a monomial order

4. The footprint of I (with respe
t to 4), denoted by ∆(I), is the set of monomials
whi
h are not leading monomials of any polynomial in I.

Let α = (α1, . . . , αm) ∈ Nm
0 (where N0 is the set of nonnegative integers), we

will denote by Mα the monomial Xα1

1
. · · · .Xαm

m . Then the map Mα 7→ α gives a

bije
tion between the set of monomials of Fq[X1, . . . , Xm] and Nm
0 . Denote by Λ the

subset of Nm
0


orresponding to the monomials whi
h are not leading monomials of

any polynomial in I with respe
t to a monomial order 4. Then ∆(I) = {Mλ | λ ∈
Λ} is the footprint of I (with respe
t to 4). One of the main properties of ∆(I)
is that {Mλ + I | λ ∈ Λ} is a basis for R as an Fq-ve
tor spa
e (see e.g. [5, Prop.

4, § 3, Ch. 5℄), and we observe that it is a basis whi
h already 
arries an order.
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Thus, for ea
h λ ∈ Λ we 
onsider the Fq-subspa
e Lλ ⊂ R whi
h is generated by

all monomials in ∆(I) whi
h are less or equal than Mλ. Clearly, if Mσ 4 Mλ then

Lσ ⊆ Lλ, so that C(Lσ) ⊆ C(Lλ). The next result shows for whi
h values of λ we

get C(Lσ) $ C(Lλ).

Theorem 2.1. Let Iq := I + (Xq
1
− X1, . . . , X

q
m − Xm). Then dimC(Lλ) >

dimC(Lσ) (with Mλ ≻ Mσ) if and only if Mλ ∈ ∆(Iq).

Proof. Observe initially that sin
e I ⊂ Iq then ∆(Iq) ⊂ ∆(I), so that the 
laim

makes sense. Denote by Fq an algebrai
 
losure of Fq, 
learly we have VFq
(I) =

VFq
(Iq) and denoting by VFq

(Iq) ⊂ Fq
m
the variety of Iq as an ideal of Fq[X1, . . . , Xm]

we also get VFq
(Iq) = V

Fq
(Iq) (
onsidering the natural in
lusion Fq

m ⊂ Fq
m
). From

Seidenberg's Lemma 92 (see [16℄ or [2, Lemma 8.13℄) we get that Iq is a radi
al

ideal, so from [2, Thm. 8.32℄ we get that R/Iq is an Fq-ve
tor spa
e of �nite di-

mension #V
Fq
(Iq), and sin
e the 
lasses of the monomials in ∆(Iq) form a basis

for R/Iq we get #∆(Iq) = n, where n = #(VFq
(I)). We will prove now that if

Mλ ∈ ∆(Iq) then dimC(Lλ) > dimC(Lσ) for any Mσ ≺ Mλ. Assume that it

is not the 
ase, so there exists σ with Mσ ≺ Mλ su
h that C(Lλ) = C(Lσ). In

parti
ular, there exists a nonzero �nite linear 
ombination

∑

Mσ′4Mσ
aσ′Mσ′ ∈ Lσ

su
h that (
∑

Mσ′4Mσ
aσ′Mσ′)(Pi) = Mλ(Pi) for all i = 1, . . . , n. From Hilbert's

Nullstellensatz (see e.g. [5, Thm. 2, §1, Ch. 4℄) we get that the polynomial Mλ −
∑

Mσ′4Mσ
aσ′Mσ′

is in

√

Iq = Iq and a fortiori Mλ /∈ ∆(Iq), a 
ontradi
tion. This


ompletes the proof of the �if� assertion, for the �only if� part observe that the

dimension of the spa
es dimC(Lλ) may jump from 1 to n at most n− 1 times, but

we just proved that it will jump n− 1 times, so every jump must 
orrespond to an

element of ∆(Iq).

From the (proof of the) above theorem we get the following result.

Corollary 2.1.1. Let ∆(Iq) := {Mλ1
, . . . ,Mλn

}, then {ϕ(Mλ1
), . . . , ϕ(Mλn

)} is a

basis for Fn
q , where n = #(VFq

(I)).

For simpli
ity we will denote by M1, . . . ,Mn the elements of ∆(Iq) and we

assume that M1 < · · · < Mn. We now show how to use the above results to �nd

a lower bound for the minimum distan
e of an a�ne variety 
ode C ⊂ Fn
q . Let

{c1, . . . , cℓ} be a basis for C, and denote by B := {b1, . . . ,bn} the (ordered) basis

for Fn
q where bi = ϕ(Mi + I), i = 1, . . . , n. For all t ∈ {1, . . . , ℓ} and i ∈ {1, . . . , n}

write ct ∗ bi as a linear 
ombination of the elements in B. One way to do this is

to write ct = ϕ(f + I) for some f ∈ Fq[X1, . . . , Xm], so that ct ∗ bi = ϕ(fMi + I).
Now observe that if Rti is the remainder in the division of ct ∗bi by a Gröbner basis

of Iq (with respe
t to �) then Rti is a linear 
ombination of the elements in ∆(Iq)
and the evaluation of fMi at the points of VFq

(I) = VFq
(Iq) 
oin
ides with the

evaluation of Rti at these points, whi
h produ
es the desired linear 
ombination.

Let Γti ⊂ ∆(Iq) denote the set of monomials Mj su
h that the 
oe�
ient of bj

in that linear 
ombination is not zero. Let Mti be the greatest element in Γti.

We want to �nd a lower bound for the weight of words of the type c =
∑t

i=1
aici

with a1, . . . , at ∈ Fq and at 6= 0. For this we de�ne Dt := {Mt1} and then for all
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i = 2, . . . , n we add Mti to the set Dt if Msi ≺ Mti for all 1 ≤ s < t. We 
laim

that the weight of c satis�es w(c) ≥ #(Dt). In fa
t, let v = #(Dt), then the v × n
matrix A whose lines are the 
oordinates of the ve
tors c ∗ bi1 , . . . , c ∗ biv in the

base B has a v × v invertible minor. To see this, let Mti1 , . . . ,Mtiv be the distin
t

elements of Dt, then for ea
h j ∈ {1, . . . , v} we have Mtij = Mλj
∈ ∆(Iq), and from

the 
onstru
tion of Dt we get that in the j-th line of A the λj-th entry is nonzero

and all entries after it are equal to zero. This proves that w(c) ≥ #(Dt), so the

minimum distan
e of C is lower bounded by min{#(Dt) | t = 1, . . . , dim(C)}.

The above method applies to any a�ne variety 
ode in Fn
q but to simplify the


al
ulations in the following examples we use 
odes whi
h are generated by some

ve
tors of the base B indu
ed by ∆(Iq). These examples also show that the method


an yield sharp bounds, and may be applied to 
odes whi
h do not 
ome from

evaluation order domains.

3. Examples

Example 3.1. For the �rst example we take the hermitian 
urve given by Y 3 +
Y − X4 = 0, de�ned over F9. Codes over this 
urve has been studied extensively,

and the minimum distan
e of one point geometri
 Goppa 
odes has been deter-

mined by Sti
htenoth ([17℄) and Yang and Kumar ([18℄). Building on the experien
e

of those who have dealt with these 
odes we 
hoose a weighted lexi
ographi
 order

for F9[X,Y ] by stating that XaY b 4 Xa′

Y b′
if and only if 3a + 4b ≤ 3a′ + 4b′,

and if equality holds then XaY b <lex Xa′

Y b′
(with Y <lex X). These weights


ome from the pole orders of the rational fun
tions x = X/Z and y = Y/Z at

the point at in�nity P∞ := (0 : 1 : 0), whi
h is their only pole. Using CoCoA

([4℄) or Ma
aulay2 ([13℄) we may 
al
ulate a Gröbner basis for the ideal I9 :=
(Y 3 + Y − X4, Y 9 − Y,X9 − X) with respe
t to 4, whi
h is {Y 3 + Y − X4, Y 9 −
Y,XY 6 − XY 4 + XY 2 − X} and from that we get that the footprint of I9 (w.r.t.

4) is ∆(I9) = {XaY b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 5} ∪ {Y 6, Y 7, Y 8}. The 
urve has

27 rational points (in the a�ne plane), whi
h is the same number of elements in

the footprint, as expe
ted from the proof of theorem 2.1. When we order the mono-

mials in ∆(I9) we get {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3, X3Y,X2Y 2, XY 3,
Y 4, X3Y 2, X2Y 3, XY 4, Y 5, X3Y 3, X2Y 4, XY 5, Y 6, X3Y 4, X2Y 5, Y 7, X3Y 5, Y 8} so
denoting by Mi the i-th monomial in ∆(Iq) we get that {bi := ϕ(Mi + I) | i =
1, . . . , 27} is a basis for F27

9
. Let C be the 
ode generated by the evaluation of (the


lass of) the �rst 5 elements of the basis, namely, C = 〈b1, . . . ,b5〉. We start

by �nding a lower bound for the weight of 
odewords of the type c =
∑5

i=1
aibi,

where a1, . . . , a5 ∈ F9 and a5 6= 0. Following the pro
edure (and the notation) de-

s
ribed at the end of the last se
tion, sin
e b1 = ϕ(1 + I) we must set D5 = {XY }
to start. Then, from c5 ∗ b2 = ϕ(XY + I) ∗ ϕ(X + I) = ϕ(X2Y + I) = b8,

c4 ∗ b2 = ϕ(X3 + I) = b7, c3 ∗ b2 = b5, c2 ∗ b2 = b4 and c1 ∗ b2 = b2

we must add X2Y to D5 obtaining D5 = {XY,X2Y }. A
tually, sin
e for any

N ∈ {1, X, Y,X2, XY } and M ∈ M := {XaY b | 0 ≤ a ≤ 1, 0 ≤ b ≤ 4} we have

NM ∈ ∆(Iq) and also M ≺ XM ≺ YM ≺ X2M ≺ XYM , then we must add

XYM to D5 for all M ∈ M, so that (so far) #(D5) = 10 . We get ten other
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elements to be added to D5 from the tables below

Remainder in the division of ci ∗ bj by the Gröbner basis of Iq

b4 = X2
b7 = X3

b8 = X2Y b11 = X3Y b12 = X2Y 2

XY X3Y Y 4 + Y 2 X3Y 2 Y 5 + Y 3 X3Y 3

X2 Y 3 + Y XY 3 +XY Y 4 + Y 2 XY 4 +XY 2 Y 5 + Y 3

Y X2Y X3Y X2Y 2 X3Y 2 X2Y 3

X X3 Y 3 + Y X3Y Y 4 + Y 2 X3Y 2

1 X2 X3 X2Y X3Y X2Y 2

Remainder in the division of ci ∗ bj by the Gröbner basis of Iq

b15 = X3Y 2
b16 = X2Y 3

b19 = X3Y 3
b20 = X2Y 4

b23 = X3Y 4

XY Y 6 + Y 4 X3Y 4 Y 7 + Y 5 X3Y 5 Y 8 + Y 6

X2 XY 5 +XY 3 Y 6 + Y 4 −XY 4 −XY 2 +X Y 7 + Y 5 −XY 5 −XY 3 +XY

Y X3Y 3 X2Y 4 X3Y 4 X2Y 4 X3Y 4

X Y 5 + Y 3 X3Y 3 Y 6 + Y 4 X3Y 4 Y 7 + Y 5

1 X3Y 2 X2Y 3 X3Y 3 X2Y 4 X3Y 4

whi
h are {X3Y, Y 4, X3Y 2, Y 5, X3Y 3, Y 6, X3Y 4, Y 7, X3Y 5, Y 8}, so that now #(D5) =
20. The produ
t of the elements in the basis of C with b18,b21,b22,b24,b25,b26

and b27 will not yield any monomial to be added to D5; for example, the remainders

in the division of c1 ∗ b25, c2 ∗ b25, c3 ∗ b25, c4 ∗ b25 and c5 ∗ b25 by the Gröbner

basis of I9 are respe
tively Y 7, XY 5 −XY 3 + XY, Y 8, X2Y 5 − X2Y 3 + X2Y and

X, so we 
annot add X to D5 (be
ause, for instan
e, X ≺ Y 8
). Likewise, we 
om-

pute #(D4), #(D3), #(D2) and #(D1) obtaining respe
tively 21, 22, 24 and 27.

Thus our bound for the minimum distan
e is 20 but this is the a
tual value of the

minimum distan
e, whi
h we may 
he
k by observing that the 
ode 
orresponds to

the geometri
 Goppa 
ode generated by a basis of L(7P∞), see [17℄.

Example 3.2. In this example we deal with the a�ne 
urve de�ned over F9 by

the equation X6Y 4 +X8 + 1 = 0. Observe that the 
losure of the 
urve in P2(F9)
has two nonsingular points, namely, P1 := (0 : 1 : 0) and P2 := (1 : 0 : 0) so

R = F9[X,Y ]/(X6Y 4 + X8 + 1) is not a weight domain (see [14℄, see also [3℄ for

results on 
odes de�ned by means of near weight domains, whi
h in
lude the ring

R). The pole divisor of the fun
tions x and y in the fun
tion �eld of the 
urve are

respe
tively, div∞(x) = 2P1+2P2 and div∞(y) = 5P1+5P2 (
al
ulations done with

KASH/KANT - [15℄) so we 
hoose a weighted lexi
ographi
 order for F9[X,Y ] by
stating that XaY b 4 Xa′

Y b′
if and only if 2a+5b ≤ 2a′ +5b′, and if equality holds

then XaY b <lex Xa′

Y b′
(with Y <lex X). Using CoCoA ([4℄) or Ma
aulay2 ([13℄)

we may 
al
ulate a Gröbner basis for I9 = (X6Y 4+X8+1, Y 9−Y,X9−X) obtaining
{X4 − 1, Y 4 −X6} so that the footprint is ∆(I9) = {XaY b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3},
and we 
on
lude that there are 16 rational points in the a�ne 
urve. Let C be the


ode generated by evaluating the 
lasses {1+I,X+I,X2+I, Y +I,X3+I,XY +I}
at the rational points in the a�ne plane (hen
e, from the above theorem we know
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that this 
ode has dimension 6). Observe that this is the geometri
 Goppa 
ode

generated by a base of L(7P1 + 7P2), or in other words, the geometri
 Goppa 
ode

asso
iated with the divisors G = 7P1+7P2 and D, where D is the sum of all rational

points. Let f = a1 + a2X + a3X
2 + a4Y + a5X

3 + a6XY , with a1, . . . , a6 ∈ F9 and

let j ∈ {1, . . . , 6} be greatest index for whi
h aj 6= 0. Denoting by B the (ordered)

basis {ϕ(XaY b + I) | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3} of F16
9 and pro
eeding as in the example

above we see that ϕ(f + I) ∗B has dimension at least 9 (respe
tively, 4, 12, 8, 12,

16) if j = 6 (respe
tively, 5, 4, 3, 2, 1), so our bound for the minimum distan
e is

4, and one may 
he
k that this is the a
tual bound. We also see that if we dis
ard

X3
and 
onsider the 
ode generated by evaluating the 
lasses {1 + I,X + I,X2 +

I, Y + I,XY + I} at the rational points, then the bound for the minimum distan
e

is now 8, and again one may 
he
k that this is the a
tual bound.
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Resumo. Nesse trabalho apresentamos um método para estimar a distân
ia mí-

nima de 
ódigos de variedades a�ns. Nossa té
ni
a usa propriedades da pegada de

um ideal obtido através do aumento do ideal de de�nição da variedade em questão,

e também pode ser apli
ada a 
ódigos de que não são produzidos utilizando-se

domínios-pesos.

Palavras-
have. Códigos de variedade a�m, bases de Gröbner, pegada de um

ideal, distân
ia mínima.
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