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Abstract. We present a method to estimate the minimum distance of affine vari-
eties codes. Our technique uses properties of the footprint of an ideal obtained by
enlarging the defining ideal of the variety, and may be applied also to codes which
do not come from the so-called weight domains.
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1. Introduction

Since the appearance of the geometric Goppa codes in the eighties, many papers
have dealt with improvements on the lower bound for the minimum distance of a
code. One of the most successful methods for this improvement was obtained by
Feng and Rao (see [6] and [7]). Many related bounds appeared after their work,
one of them being a bound derived by Andersen and Geil in [1]. In that paper the
authors first derive a general approach to obtain a bound for the minimum distance
(actually, for the generalized Hamming weights) of a linear code, and then show
how to apply their method to codes defined from weight domains. A weight domain
is an F-algebra, where F is a field, which admits a function to NoU{—o00} satisfying
certain properties, which makes the domain suitable to be used for defining codes,
when F is a finite field. They were introduced in [12] by T. Hgholdt, J. H. van Lint
and R. Pellikaan in order to present an alternative construction for geometric Goppa
codes with simple tools from commutative algebra. In the present work we show
how to apply Andersen and Geil’s general approach to affine variety codes. Similarly
to codes obtained from weight domains, these are evaluation codes obtained from
the ring of regular functions of an affine variety but weight functions play no role in
this theory. Since the algebras which appear in the weight function theory are the
ring of regular functions of certain type of variety (see [11]) our result applies to a
more comprehensive class of rings (see Example 3.2). Thus, distinctly from recent
works (see e.g. [9] and [10]) we do not need concepts like “well-behaving basis” or
“one-way well behaving basis”. An important set of data to obtain a bound for
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the minimum distance is the set of indexes where there is a “dimension jump” in a
sequence of nested vector spaces. While in [1] there are several results on such set
for the case of codes from weight domains, and in particular, one-point geometric
Goppa codes, here we show that this set may be read directly from the footprint of
an ideal obtained by enlarging the defining ideal of the curve.

In the next section we recall Andersen and Geil’s approach to obtain a bound
for the minimum distance of a linear code, we introduce the affine variety codes
and recall the definition and some properties of the footprint of an ideal, then we
prove our main result. Following that, we present some examples to illustrate our
method, including codes obtained from an algebra which does not admit a weight
function.

2. Main result

Let F, be a finite field with ¢ elements, n a positive integer and for a := (a1, ..., an),
b:= (b1,...,b,) € [y define a xb := (a1b1,...,anby). Let C be a vector subspace
of Fy. The idea of Andersen and Geil for finding a lower bound for the minimum
distance of C' stems from the fact that if ¢ € C and {by,...,b,} =: B is a basis for
[y then the subspace c * B generated by {c*by,...,c*b,} has dimension equal
to the weight of c. Thus we have the following result, which is not explicitly stated
in [1] but is used there.

Lemma 2.1. The minimum distance d(C) is equal to min{dimc*B ;c € C\ {0}}.

We will use this result to estimate the minimum distance of the so-called affine
variety codes, which were introduced by J. Fitzgerald and R. F. Lax in [8]. Let
I CFy[X1,...,Xp] be an ideal, let Vi, (1) = {P1,..., P,} be the associated variety
of F,-rational points and set R := Fy[X1,...,X,,]/I. Consider the evaluation
morphism ¢ : R — Fp given by f+ I = (f(P1),...,f(P,)) and let L be an
F4-vector subspace of R.

Definition 2.1. The affine variety code C(L) is the image ¢o(L).

We observe that as an Fg-vector space R may not have finite dimension. A
useful way of finding a basis for R is by means of the so-called footprint an ideal.

Definition 2.2. Assume that F,[X1,...,X,,] is endowed with a monomial order
<. The footprint of I (with respect to <), denoted by A(I), is the set of monomials
which are not leading monomials of any polynomial in 1.

Let o = (aq,...,am) € NJ* (where Ny is the set of nonnegative integers), we
will denote by M, the monomial X{*.--- . X*m_  Then the map M, — « gives a

bijection between the set of monomials of Fy[X1,. .., X,,] and NJ*. Denote by A the
subset of N’ corresponding to the monomials which are not leading monomials of
any polynomial in I with respect to a monomial order <. Then A(I) = {M,) | A €
A} is the footprint of I (with respect to <). One of the main properties of A(T)
is that {Mx + I | A € A} is a basis for R as an F-vector space (see e.g. |5, Prop.
4, § 3, Ch. 5]), and we observe that it is a basis which already carries an order.



Grobner Bases and Minimum Distance 259

Thus, for each A € A we consider the F4-subspace Ly C R which is generated by
all monomials in A(I) which are less or equal than M. Clearly, if M, < M) then
L, C Ly, so that C(L,) € C(Ly). The next result shows for which values of A we
get C(Ls) G C(Ly).

Theorem 2.1. Let I, := [ + (X{ — X3,...., X% — X,,). Then dimC(Ly) >
dim C(Ly) (with My > M) if and only if My € A(1y).

Proof. Observe initially that since I C I, then A(I;) C A(I), so that the claim
makes sense. Denote by F, an algebraic closure of F,, clearly we have Vr,(I) =
Vk, (1) and denoting by VE(I‘?) c F," the variety of I, as an ideal of F[X1, ..., X,]
we also get Vg, (1) = VE(LI) (considering the natural inclusion F,™ ¢ F,"). From
Seidenberg’s Lemma 92 (see [16] or [2, Lemma 8.13]) we get that I, is a radical
ideal, so from [2, Thm. 8.32| we get that R/I, is an F,-vector space of finite di-
mension #Vg-(Iy), and since the classes of the monomials in A(Iy) form a basis
for R/1, we get #A(l,) = n, where n = #(Vr,(I)). We will prove now that if
My € A(ly) then dimC(Ly) > dimC(L,) for any M, < M. Assume that it
is not the case, so there exists o with M, < M) such that C(Ly) = C(L,). In
particular, there exists a nonzero finite linear combination M, <M, ag' My € Ly
such that (32, ,<n, G0 Mor)(Pi) = Mx(P;) for all i = 1,...,n. From Hilbert’s
Nullstellensatz (see e.g. [5, Thm. 2, §1, Ch. 4]) we get that the polynomial M, —
>om,, <M, QoMo is in VI = I, and a fortiori My ¢ A(I,), a contradiction. This
completes the proof of the “if” assertion, for the “only if” part observe that the
dimension of the spaces dim C(Ly) may jump from 1 to n at most n — 1 times, but

we just proved that it will jump n — 1 times, so every jump must correspond to an
element of A(1). O

From the (proof of the) above theorem we get the following result.

Corollary 2.1.1. Let A(Iy) :={M),,..., My, }, then {o(My,),...,o(Mx,)} is a
basis for Fy, where n = #(Vg, (1)).

q’

For simplicity we will denote by Mj,..., M, the elements of A(l;) and we
assume that M; < --- < M,. We now show how to use the above results to find
a lower bound for the minimum distance of an affine variety code C' C Fy. Let
{c1,...,¢¢} be a basis for C, and denote by B := {by,...,b,} the (ordered) basis
for ) where b; = o(M; +1),i=1,...,n. Forallt € {1,... ¢} andi € {1,...,n}
write c¢; * b; as a linear combination of the elements in B. One way to do this is
to write ¢, = @(f + I) for some f € Fy[X1,..., Xy], so that ¢, xb; = o(fM; + I).
Now observe that if Ry; is the remainder in the division of ¢; *xb; by a Grobner basis
of I, (with respect to <) then Ry; is a linear combination of the elements in A(I,)
and the evaluation of fM; at the points of Vg (I) = Vi, (I,) coincides with the
evaluation of R;; at these points, which produces the desired linear combination.
Let I'y; C A(I,) denote the set of monomials M; such that the coefficient of b;
in that linear combination is not zero. Let My; be the greatest element in I'y;.
We want to find a lower bound for the weight of words of the type ¢ = 25:1 a;c;
with a1,...,a; € F; and a; # 0. For this we define D, := {M;1} and then for all
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i =2,...,n we add My to the set D; if My < My; for all 1 < s < t. We claim
that the weight of c satisfies w(c) > #(D;). In fact, let v = #(D;), then the v x n
matrix A whose lines are the coordinates of the vectors ¢ « b;,,...,c* b, in the
base B has a v x v invertible minor. To see this, let My;,, ..., My;, be the distinct
elements of Dy, then for each j € {1,...,v} we have My;, = My, € A(I,), and from
the construction of D; we get that in the j-th line of A the A;-th entry is nonzero
and all entries after it are equal to zero. This proves that w(c) > #(D;), so the
minimum distance of C' is lower bounded by min{#(D;) |t =1,...,dim(C)}.

The above method applies to any affine variety code in Fy but to simplify the
calculations in the following examples we use codes which are generated by some
vectors of the base B induced by A(Z;). These examples also show that the method
can yield sharp bounds, and may be applied to codes which do not come from
evaluation order domains.

3. Examples

Example 3.1. For the first ezample we take the hermitian curve given by Y3 +
Y — X* =0, defined over Fyg. Codes over this curve has been studied extensively,
and the minimum distance of one point geometric Goppa codes has been deter-
mined by Stichtenoth ([17]) and Yang and Kumar ([18]). Building on the experience
of those who have dealt with these codes we choose a weighted lexicographic order
for Fo[X,Y] by stating that XY < XYY if and only if 3a + 4b < 3a’ + 4V,
and if equality holds then XYl <ox xay? (with Y <jex X ). These weights
come from the pole orders of the rational functions x = X/Z and y = Y/Z at
the point at infinity Ps := (0 : 1 : 0), which is their only pole. Using CoCoA
([4]) or Macaulay2 ([13]) we may calculate a Grébner basis for the ideal Iy :=
(Y3+Y — X4 Y? -V, X% — X) with respect to <, which is {Y>+Y — X4 Y9 —
Y, XY — XY* + XY?2 — X} and from that we get that the footprint of Iy (w.r.t.
<) is A(ly) = {XY" | 0<a<30<0b<5U{YC YT Y8, The curve has
27 rational points (in the affine plane), which is the same number of elements in
the footprint, as expected from the proof of theorem 2.1. When we order the mono-
mials in A(ly) we get {1,X,Y, X2 XY, Y2 X3 X?Y, XY? V3 X3Y, X?Y?2 XY3,
Y4 X3Y2 X2Y3 XY4 V5, X3Y3 X2Y4 XY5 Y6 X3Y4 X2Y5 Y7 X3Y® Y8} so0
denoting by M; the i-th monomial in A(Iy) we get that {b;, == (M, +I)|i =
1,...,27} is a basis for F37. Let C be the code generated by the evaluation of (the
class of) the first 5 elements of the basis, namely, C = (by,...,bs). We start
by finding a lower bound for the weight of codewords of the type ¢ = Ele a;b;,
where ay,...,a5 € Fg and a5 # 0. Following the procedure (and the notation) de-
scribed at the end of the last section, since by = (1 + I) we must set D5 = {XY'}
to start. Then, from c5 * by = (XY + 1) x (X + 1) = ¢(X?Y + I) = bg,
C4*b2 = QO(X3—|—I) = b7, C3*b2 = b5, CQ*bQ = b4 and Cl*bg = b2
we must add X2Y to Ds obtaining Ds = {XY,X2Y}. Actually, since for any
Nec{l,X,)Y, X2 XY} and M € M :={XY" | 0<a<1,0<b<4} we have
NM € A(I,) and also M < XM <YM < X?M < XYM, then we must add
XYM to Dy for all M € M, so that (so far) #(Ds) = 10 . We get ten other
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elements to be added to D5 from the tables below
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Remainder in the division of c; x b; by the Grébner basis of I,
by =X?| b;=X3 |bg=X?%Y| by =X3 | by =X%Y?
XY | X% Yi+y? X3y? Yo +v? X3y3
X2 | Y3+Y | XY34+ XY | YP+Y? | XY*+XY?| YO 4V3
Y X%y X3y X?y? X3y? X2%ys
X X3 Y3+Y X3y Y44+ y? X3y?
1 X2 X3 X%y X3y X?y?
Remainder in the division of c; x b; by the Grébner basis of I,
bis = X3Y?2 | bjg = X2Y3 by = X373 by = X2Y4 byz = X3Y*
XY | YO4+y* X3y+? YT +Y? X3y® Y8 4+y®°
X2 | XYS5+XY3| YO+Y? | XV - XY?24+X| Y'+Y5 | -XY’—XY3+XY
Y x3y3 X2y+4 X3y X2y+4 X3y+4
X | vy 4+y? X3y3 Yo+ v! X3y? Y'Y
1 X3y? X?ys3 X3y3 X2y+ X3y+

which are {X3Y, Y4 X3Y2 Y? X3Y3 Y6, X3Y4 Y7 X3Y?, Y3}, so that now #(Ds) =
20. The product of the elements in the basis of C' with big,ba1, bas, boy, bas, bog
and bay will not yield any monomial to be added to Ds; for example, the remainders

in the division of c1 * bas, €2 % bas, €3 % bas, ¢4 * bos and cs * bas by the Grébner
basis of Iy are respectively Y7, XY® — XY3 + XY, Y8 X2Y5 — X2Y3 + X2Y and
X, so we cannot add X to Ds (because, for instance, X < Y3). Likewise, we com-
pute #(Dy), #(D3), #(D2) and #(D1) obtaining respectively 21, 22, 24 and 27.
Thus our bound for the minimum distance is 20 but this is the actual value of the
minimum distance, which we may check by observing that the code corresponds to
the geometric Goppa code generated by a basis of L(7Px), see [17].

Example 3.2. In this ezample we deal with the affine curve defined over Fg by
the equation X°Y* + X8 4+ 1 = 0. Observe that the closure of the curve in P?(Fo)
has two nonsingular points, namely, P, := (0 : 1 : 0) and P, := (1 : 0 : 0) so
R =TFy[X,Y]/(XOV* + X8+ 1) is not a weight domain (see [14], see also [3] for
results on codes defined by means of near weight domains, which include the ring
R). The pole divisor of the functions x and y in the function field of the curve are
respectively, diveo () = 2P1 + 2P and diveo (y) = 5P + 5P, (calculations done with
KASH/KANT - [15]) so we choose a weighted lexicographic order for Fo[X,Y] by
stating that X°Y® < XYY if and only if 2a + 5b < 2a’ + 5, and if equality holds
then XY <o XYY (with Y <jox X). Using CoCoA ([4]) or Macaulay? ([13])
we may calculate a Grébner basis for Iy = (XY 44+ X84+1,Y?-Y, X°— X) obtaining
{X*—1,Y* — X5} so that the footprint is A(ly) = {X*Y?|0<a<3,0<b<3},
and we conclude that there are 16 rational points in the affine curve. Let C be the
code generated by evaluating the classes {1+1, X +1, X*+1,Y +1,X3+1,XY +1}
at the rational points in the affine plane (hence, from the above theorem we know
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that this code has dimension 6). Observe that this is the geometric Goppa code
generated by a base of L(TP, + 7TP,), or in other words, the geometric Goppa code
associated with the divisors G = TP+ 7P, and D, where D is the sum of all rational
points. Let f = a1 +as X + a3 X? + asY + a5 X3 +ag XY, with a1, ...,a € Fg and
let j € {1,...,6} be greatest index for which a; # 0. Denoting by B the (ordered)
basis { (XY +1)]|0<a<3,0<b<3} of FS and proceeding as in the evample
above we see that o(f + I) «x B has dimension at least 9 (respectively, 4, 12, 8, 12,
16) if j = 6 (respectively, 5, 4, 3, 2, 1), so our bound for the minimum distance is
4, and one may check that this is the actual bound. We also see that if we discard
X3 and consider the code generated by evaluating the classes {1+ I, X +1,X? +
I,Y + I, XY + 1} at the rational points, then the bound for the minimum distance
is now 8, and again one may check that this is the actual bound.
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Resumo. Nesse trabalho apresentamos um método para estimar a distancia mi-
nima de cédigos de variedades afins. Nossa técnica usa propriedades da pegada de
um ideal obtido através do aumento do ideal de defini¢cdo da variedade em questao,
e também pode ser aplicada a cédigos de que nao sdao produzidos utilizando-se
dominios-pesos.

Palavras-chave. Codigos de variedade afim, bases de Grobner, pegada de um
ideal, distancia minima.
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