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Abstract. In this paper we propose an accelerated lifetime test model with thresh-

old stress under a Log-logistic distribution to express the behavior of lifetimes and

a general stress-response relationship. We present a sampling-based inference pro-

cedure of the model based on Markov Chain Monte Carlo techniques. We assume

proper but vague priors for the parameters of interest. The methodology is illus-

trated on an artificial and real lifetime data set.
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1. Introduction

Accelerated lifetime tests (ALT) are widely used as a means of getting information
on the reliability of a manufactured product. They consist in submitting its units
to higher stress levels than the usual working conditions, which provides useful and
fast information about the lifetime distribution and other durability properties of
the components (See, e.g., Mann et al. (1974), Abdel-Hameed et al (1984) and
Nelson (1990)).

ALT models are composed of a probabilistic component, which is represented
by a lifetime distribution such as exponential, Weibull, log-normal or log-logistic,
among others, and by a stress-response relationship (SRR), which relates the mean
lifetime with the stress levels. Common SRRs are the inverse power law, Eyring
and Arrhenius models (Mann et al, 1974).

ALT users are particularly interested in determining the threshold stress (Hirose,
1993; Hagwood et al., 1999; Tojeiro et al., 2010), below which the lifetime of a
product can be considered to be infinity, or a failure unlikely to occur. Knowing the
threshold stress level, and not taking it into account may lead to serious errors in
the estimates of other parameters of the model (Tojeiro et. al, 2004). We discuss in
Section 4 a real ALT data set, given by Smith (1991), in which the threshold stress
plays a crucial role. The exponential and weibull distributions are appropriate to
fit data with a monotonic trend over time, with the hazard rate either increasing
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at higher values of t or decreasing. However, these models are inadequate if the
probability of an event at first increases, but after reaching a maximum value it
tails off again, possibly to zero.

In order to make the model suitable for the case of non-monotonic hazard func-
tions, in this paper we propose an ALT model with the log-logistic distribution to
express the behavior of lifetimes. Besides sharing with the log-normal distribution
a unimodal behavior of its hazard function, unlike the latter it has the advantage
(like the Weibull and exponential models) of having simple algebraic expressions for
the survivor and hazard functions.

The paper is organized as following. In the next Section we describe the model
formulation. In Section 3 we discuss the hazard functions for the log-logistic dis-
tributions derived from the SRR and obtain the corresponding likelihood functions
and we too develop a sampling-based analysis of the models via a Markov Chain
Monte Carlo (MCMC) algorithm. The methodology is illustrated on an artificial
data set and a real data set of ALT models in Section 4, where we also present
the results of a simulation study that examines the coverage probabilities of the
confidence intervals for the parameters based on the usual asymptotic theory. A
brief discussion in Section 5 concludes the paper.

2. Model Formulation

Let T be a random variable denoting the lifetimes with a probability distribution
indexed by two parameters λ and φ, indicating the parameters of scale and shape,
respectively. We define a general stress-response relationship (GSRR) relating the
inverse of the scale parameter 1/λi with a covariate vector of stress z, which
includes a unknown parameter vector of threshold stress ω0, such that, (z−ω0) is
equal to 0, if z < ω0 or equals to z−ω0 if z ≥ ω0. With m levels of the covariate
z, the GSRR is given by

λi = exp
{
−
(
wi +α

T + βT (z − ω0)
)}

, (2.1)

where i = 1, 2, ...,m and −∞ < α, β < ∞ are vectors of unknown regression
parameters. Although the GSRR (2.1) allows multiple covariates, which may occur
in certain experiments, from now on we restrict ourselves for simplicity to the case
of a single covariate z and ω0, which is usual in survival analysis.

The GSRR given by (2.1) includes several SRR’s used in engineering applica-
tions as particular cases:

i) when ω0 = 0 we have the general SRR defined in Achcar and Louzada-Neto
(1992);

ii) the inverse power law model with a threshold stress is obtained for wi = 0,
α = log(β0), β = −β1 and (z − ω0) = log(xi − ω0), where xi, i = 1...,m, are
the stress levels,

iii) Arrhenius model with a threshold stress corresponds to wi = 0, α = −β0,
β = β1, (z − ω0) = 1/ (xi − ω0);
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iv) if wi = − log (xi) , α = −β0, β = β1 and (z − ω0) = 1/ (xi − ω0) , we have
Eyring’s model with a threshold stress.

If, in addition, ω0 = 0 in (ii), (iii) and (iv), we get the usual inverse power law,
Arrhenius and Eyring models, respectively.

Although, in principle, the methodology developed in this paper can be applied
to any SRR included in (2.1) , we restrict ourselves to the case of a inverse power
law model with a threshold stress as in (ii), that is,

λi = exp {− log(β0) + β1 log (xi − ω0)} . (2.2)

3. Inference

For inference we adopt a fully Bayesian approach. The likelihood function, prior
distributions for the parameters in the model and details of the MCMC algorithm
are described below.

3.1. Likelihood function

Considering a scenario characterized by submitting m groups of ni items, i =
1, ...,m, under m constant and fixed stress covariates zi (hereafter referred to as
stress levels) associated with the failure times tij , j = 1, ..., ni, the maximum likeli-
hood estimates (MLEs) of the parameters can be obtained by direct maximization
of the log-likelihood function

logL =

m∑

i=1

ni∑

j=1

δij log h(tij |zi)−H(tij |zi), (3.1)

where δij = 1 if tij is an observed failure time and δij = 0 if tij is a right-censored

observation, and H(t|z) =
∫ t

0 h(u|z)du is the cumulative baseline hazard function
(Lawless, 2002). Right-censoring is the only form of censoring considered here,
though the principles of the proposed maximum likelihood analysis are certainly
not dependent on such restriction.

Let T be a lifetime random variable with a log-logistic distribution with pa-
rameters λ > 0 and φ > 0, respectively (Lawless, 2002). The corresponding hazard
function using the inverse power law model with threshold stress for a covariate z,
as described in ii) of Section 2 is given by

h (t|z) =
φλφtφ−1

1 + (λt)
φ
, (3.2)

where λi = 1/µi = exp{− log(β0) + β1 log(xi − ω0)}.

Given the data from m random stress levels with a censoring scheme as described
above, it follows from (3.1) and (3.2) that the kernel of the likelihood function for
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the parameters β0, β1, ω0 and φ, under the i-th stress level xi, is given by

L (β0, β1, ω0, φ)α
m∏

i=1

ni∏

j=1

[
φλφ

i t
φ−1
ij

1 + (λitij)
φ

]δij (
1

1 + (λitij)
φ

)
. (3.3)

3.2. Sampling-based inference

Inferences about the parameters can be based on a fully Bayesian approach, where
their marginal posterior densities, which can be obtained by integrating the joint
posterior density. In our case, however, it is not possible to obtain analytical solu-
tions for the integrals. In order to overcome this problem we use the Gibbs sampler
approach, which is an iterative procedure of a broad class of methods generically
named Markov Chain Monte Carlo (MCMC). Interested readers can refer to Gelfand
and Smith (1990) and Gilks et al. (1996), which describe many practical aspects
of MCMC. This method is applicable in situations where one is not able to gener-
ate samples directly from the joint posterior density. However, the full conditional
posterior densities for the parameters are required in each step of the iterative
sampling-based algorithms.

In order to avoid numeric instability, we follow Davison and Hinkey (1997) and
consider the parametrization β0, β1, ω0 = x1−exp(ρ) and φ,for this model. We first
specify a prior density for β0, β1, ρ and φ. For simplicity, we assign independent
normal prior distributions N

(
µi, σ

2
i

)
with µi = 0 and large σ2

i , i = 1, ..., 3 for the
parameters β0, β1 and ρ. Since the parameter φ is non-negative, a prior distribution
with support over the positive line is desired. We consider, for instance, a gamma
distribution with parameters (q, v) for φ in the Log-logistic case. The hyperparam-
eter values have been chosen in order to represent locally non informative priors.
In order to give support to our choice of the distributions, a sensitivity analysis of
the hyperparameters has been carried out, which indicated very close results for the
parameter estimations under different choices of the hyperparameters.

Then, combining the prior densities for β0, β1, ρ and φ with (3.3), we obtain
that their joint posterior density is given by

π (β0, β1, ρ, φ, |data)α

m∏

i=1

ni∏

j=1

[
φλφ

i t
φ−1
ij

1+ (λitij)
φ

]δij (
1

1+ (λitij)
φ

)

exp

(
−

β2
0

2σ2
1

−
β2
1

2σ2
2

−
ρ2

2σ2
3

−vφ

)
φq−1,

which can also be written as

π (β0, β1, ρ, φ, |data)α exp





m∑

i=1

ni∑

j=1

δij log

[
φλφ

i t
φ−1
ij

1 + (λitij)
φ

]
− log

(
1 + (λitij)

φ
)

−

(
β2
0

2σ2
1

+
β2
1

2σ2
2

+
ρ2

2σ2
3

+ vφ

)
+ (q − 1) logφ

}
. (3.4)

Since the full conditional densities for β0, β1, ρ, and φ (described in Appendix
A) do not belong to any known parametric family, in order to generate samples
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we need to implement an acceptation/rejection algorithm. In our case we use the
adaptative rejection metropolis sampling algorithm (ARMS) introduced by Gilks
et al.(1995). The ARMS algorithm is a generalization of the method of adapta-
tive rejection sampling algorithm (ARS) (Gilks and Wild, 1992), which includes a
metropolis step to accommodate non-log-concavity in the density to be sampled.
The adaptative rejection metropolis sampling algorithm is implemented in the soft-
ware BUGS (Spiegehalter et al., 1997).

4. Data Analysis

In this section the proposed methodology is applied to two data set. The first one
is an artificial data set while the second one is a real numerical example extracted
from Smith (1991). We also present the results of a simulation study performed in
order to study the coverage probabilities of the confidence intervals for the model
parameters in presence of small or moderated sized samples if the usual frequentist
theory were considered.

4.1. Artificial data

The artificial data set was based on a sample generated from the log-logistic distri-
bution using the inverse power law model (3.2). The parameters have been given
fixed values β0 = 2.5, β1 = 2.0 , φ = 3 and ω0 = 4.8 . Three stress levels have
been fixed at x = 5, 10, 15 with 100 non-censored observations at each level. By
means of graphical techniques we can roughly determine the shape of the hazard
function and find out whether the shape parameter depends on covariates or if it
remains unchanged for all stress levels (Lawless, 2002). The shape is the same for
all stress levels if one expects the plots of the estimated survival functions to be
parallel straight lines (Nelson, 1990). Since this is roughly the case in our situa-
tion,as shown in Figure 1, a good fit by a log-logistic model with a constant shape
parameter is suggested (Lawless, 2002).

We have used the software CODA (Best et al., 1995) for monitoring the behavior
of the chains. The Raftery-Lewis diagnostic suggested 8.000 iterations to reach
the convergence for the parameters. Running BUGS again with these values has
detected convergence by all implemented criteria in CODA. To study the sensitivity
in the parameters estimates, we have considered some different hyperparameter
values in the suggested priors. These were N

(
0, σ2

i

)
with σ2

i = 102, 103, 104 for
i = 1, ..., 3 and Γ (q, v) with q = 10−1 and v = 10−2, 10−3. Since similar estimates
have been obtained for all cases, we only show the results for σ2

i = 104 and b = 10−3.

The parameters estimates of the model based on our sample-based analysis and
their 95% HDP intervals by considering the Gibbs sampler algorithm are given by:
β̂0 = 2.59 (2.26; 3.11), β̂1 = 2.16 (1.98; 2.58), ω̂0 = 4.63 (4.48; 4.74) and φ̂ = 3.32
(2.98; 3.89), respectively.
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Figure 1: Left panel: linearized H(t) for artificial data. Right panel: Kaplan-
Meier(st) against log-logistic model(stll) for artificial data.

4.2. Kvelar fibres data

As a real numerical example we have considered the data extracted Table 2 of Smith
(1991), which consists of failure times of Kvelar 49 fibres loaded at four different
stress levels. For this kind of data the log-logistic distribution is widely used. We
have considered the test performed at m = 3 levels of the stress; xi = 23.4, 25.5
and 27.6 MPa for i = 1, ..., 3, with ni = 21, 25 and 24 observations at each level. In
the level 23.4 we have 11 censured observations. A good fit by a log-logistic model
is suggested maybe of the plot of S (t)−empirical Kaplan-Meier Survival function
against log-logistic model(Figure 2-a)for all levels and 2-b)for each level of stress. We
can also observe a good fit through of the plot of Normalized randomized quantile
residuals against N(0, 1) quantiles (Figure 2-c). Also the plot of log Ĥ (t|z) against
log t, given in Figure 2-d, turned out to be roughly linear and parallel, where
Ĥ (t|z) is the empirical cumulative hazard function (Lawless, 2002), a constant
shape parameter φ for the failure time was suggested.

The parameters estimates of the model based on our sample-based analysis and
their 95% HDP intervals by considering the Gibbs sampler algorithm are given by:
β̂0 = 18.74 (15.76; 23.86), β̂1 = 5.77 (3.82; 7.40), ω̂0 = 21.66 (18.09; 24.13) and

φ̂ = 1.306 (1.034; 1.606), respectivelly.
Again we have used the software CODA (Best et al. 1995) for monitoring the

behavior of the chains. The Raftery-Lewis diagnostic suggested 12,000 iterations
to reach the convergence for the parameters. Running BUGS again with these val-
ues has detected convergence by all implemented criteria in CODA. To study the
sensitivity in the parameters estimates, we have considered some different hyperpa-
rameter values in the suggested priors. These were N

(
0, σ2

i

)
with σ2

i = 102, 103, 104

for i = 1, ..., 3 and Gamma (a, b) with a = 10−1 and b = 10−2, 10−3. Since similar
estimates have been obtained for all cases, we only show the results for σ2

i = 104
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and b = 10−3.
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Figure 2: (a): Empirical survival function with the log-logistic distribution for all
levels and (b): for each levels (Kvelar). (c): Quantiles (Kvelar). (d): Linearized
H(t) (Kvelar)

4.3. Coverage probabilities

In this section we realized a simulation studies, where we studed the coverage prob-
abilities of the usual aymptotic confidence intervals, with the objective of analizing
the frequentist theory for small or moderate data sets. To examine the frequen-
tist properties we constructed the confidences intervals for all the parameters and
calculated they coverage probabilities.

From the frequentist point of view, inference for the parameter vector ψ =
(β0, β1, ω0, φ) can be based on large sample properties of the MLEs, which leads to
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(Sen and Singer, 1993)

(
ψ̂ −ψ

)

I−1/2(ψ̂)
D−−−−−−→ N (0, I4) , (4.1)

where I−1/2(ψ̂) denotes the observed information matrix of ψ evaluated at the
MLEs and I4 is the identity matrix of dimension four. Although this is an standard
asymptotical method, we shall see bellow that it does not lead to very accurate
results for small or moderate samples sizes, which is usually the case in reliability
studies. We check the behavior of the asymptotic theory for small or moderate
data sets, by performing a small-scale simulation study for examining the coverage
probabilities of the confidence intervals for the parameters obtained via (3.3).

Samples have been generated according to a study performed at three covariate
levels, x = 5, 10, 15 with n = 10, 30, 100 non-censored items at each level, and
the log-logistic distribution (3.2) has been assumed for the lifetimes with scale and
shape parameters λi = 1/µi = exp{− log(β0)+β1 log(xi−ω0)}, and φ, respectively.
The parameter values have been fixed at β0 = 2.5, β1 = 2, ω0 = 4.8, and φ = 3 . A
thousand samples have been generated for each case. Table 1 shows the variation in
coverage of nominal 95% confidence intervals according to the sample size. The 95%
confidence interval for the nominal coverage probability of 0.95 based on a sample
of size equals to a thousand observations is given by (0.929, 0.961). If a confidence
interval has exact coverage of 0.95, roughly 95% of the observed coverages should
be inside these bounds.There is clear under-coverage of the confidence intervals for
small and moderate sized samples. Such findings give evidence for the need of more
adequate procedures for small or moderate sized samples, such as the sampling-
based procedure developed here.

Table 1: Coverage probabilities of nominal 95% confidence intervals.

n β0 β1 ω0 φ
10 0.88 0.89 0.86 0.83
30 0.91 0.90 0.91 0.87
100 0.95 0.96 0.94 0.91

5. Final Comments

The model considered in this paper can be extended in several directions. In princi-
ple, a general model, knowing with a hybrid hazard regression model with threshold
stress which includes the proportional hazards and the accelerated failure time mod-
els as particular cases, can be considered to express the behavior of lifetimes. Our
model is defined as

h (t|z) = g1
(
α0

T (z − ω0)
)
h0

(
g2
(
α1

T (z − ω0)
)
t;φ
)
, (5.1)
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where g1 (.) , g2 (.) are known positive monotone functions that assume the value 1
when their arguments are zero, z is a covariate vector, α0, α1 and φ are vectors of
unknown regression parameters, ω0 is the unknown parameter vector of threshold
stress, as described in Section 2, and h0 (.) denotes the baseline hazard function.
From the parametric point of view, if we assume g1(·) = g2(·) = g(·) and

h0(u;φ) =
1

1 + uφ
, (5.2)

with u = µt, model (2.1) corresponds to the hazard function of a random variable
with a log-logistic distribution with the scale parameter depending on covariates
(Kalbfleisch and Prentice, 1980).
Other distributions too can be used besides the log-logistic. One can also deal
with situations that involve more than one covariate, some of which may admit
thresholds. Another possibility is to consider different censoring schemes other than
type right-censoring. The latter was used in this paper because it is the one that
typically appears in industrial experiments. Other censoring schemes like random
censoring may be used in applications such as survival experiments. We hope to
report on results related to these extensions in future work.

We have developed a Bayesian approach for the analysis of the models. Al-
though, we have adopted Normal priors throughout, the methodology employed is
quite general, and the prior specifications could be adopted relatively easily. Infer-
ence for the model parameters is based on MCMC Methods which worked well in
application.

Appendix

The full conditional posterior densities for β0, β1, ρ and φ are given by

π (β0|β1, ρ, φ)α exp




m∑

i=1

ni∑

j=1

δij (−φβ0)− (δij + 1) log
(
1 + (λitij)

φ
)
−

β2
0

2σ2
1


 ,

π (β1|β0, ρ, φ)α exp




m∑

i=1

ni∑

j=1

δij [φβ1 log(xi − x1 + exp(ρ))]

− (δij + 1) log
(
1 + (λitij)

φ
)
−

β2
′1

2σ2
2

]
,

π (ρ|β0, β1, φ)α exp




m∑

i=1

ni∑

j=1

δij [φβ1 log(xi − x1 + exp(ρ))]

− (δij + 1) log
(
1 + (λitij)

φ
)
−

ρ

2σ2
3

]
,
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and

π (φ|β0, β1, ρ)α exp




m∑

i=1

ni∑

j=1

δij log
[
φλφ

i t
φ−1
ij

]
− (δij + 1) log

(
1 + (λitij)

φ
)

− vφ+ (q − 1) logφ

]
.

References

[1] M. Abdel-Hameed, E. Cinlar, J. Quinn, “Reliability Theory and Models:
Stochastic Failure Models, Optimal Maintenance Policies, Life Testing and
Structures”, Academic Press, New York, 1984.

[2] J. Achcar, F. Louzada-Neto, A Bayesian approach for accelerated life tests
considering the Weibull distribution, Computational Statistics, 7, (1992) 355–
368.

[3] N.G. Best, M. K. Cowles, S.K. Vines, “CODA: Convergence Diagnostic and
Output Analysis Software for Gibbs Sampling Output, Version 0.3. MRC” Bio-
statistics Unit, Cambridge, 1995.

[4] A.C. Davison, D.V. Hinkley, “Bootstrap Methods and their Applications”,
Cambridge University Press, Cambridge, 1997.

[5] A.E. Gelfand, A.F.M. Smith, Sampling-based approaches to calculating
marginal densities. Journal of the Americam Statistical Society, B, 85, (1990)
398–409.

[6] W.R. Gilks, P. Wild, Adaptative rejection sampling for Gibbs sampling. Applied

Statistics, 41, (1992) 337–348.

[7] W.R. Gilks, N.G. Best, K.K.G. Tan, Adaptative rejection metropolis sampling
with Gibbs sampling, Applied Statistics, 44, (1995) 455–472.

[8] W.R. Gilks, S. Richardson, D.J. Spiegelhalter, “Markov Chain Monte Carlo in
Practice”, Chapman & Hall, London, 1996.

[9] H. Hirose, Estimation of threshold stress in accelerated life-testing. IEEE

Transactions on Reliability, 42, (1993) 650–657.

[10] C. Hagwood, R. Clough, R. Fields, Estimation of the threshold-stress for the
Weibull inverse power law, IEEE Transactions on Reliability, 48, (1999) 176–
181.

[11] J.D. Kalbfleisch, R.L. Prentice, “The Statistical Analysis of Failure Time Data”,
Jonh Wiley and Sons, New York, 1980.

[12] J.F. Lawless, “Statistical Models and Methods for Lifetime Data”, Jonh Wiley
& Sons, New York, 2002.



The Log-logistic Regression Model with Threshold Stress 77

[13] F. Louzada-Neto, C.A.V. Tojeiro, G.C. Perdoná, A hybrid Hazard model with
threshold stress: the Weibull case, Advances and Applications in Statistical

Sciences, 1, (2010) 145–155.

[14] N.R. Mann, R.E. Schafer, N.D. Singpurwalla, “Methods for Statistical Analysis
of Reliability and Life Data”, Jonh Wiley and Sons, New York, 1974.

[15] W. Nelson, “Accelerated Testing: Statistical Models,Test Plans and Data Anal-
ysis”. Jonh Wiley and Sons, New York, 1990.

[16] P.K. Sen, J.M. Singer, “Large Sample Methods in Statistics: an Introduction
with Applications”, Chapman & Hall, New York, 1993.

[17] R.L. Smith, Weibull regression models for reliability data, Reliability Engineer-

ing and System Safety, 34, (1991) 55–77.

[18] D. Spiegehalter, A. Thomas, N. Best, et al. “BUGS (Bayesian Inference Using
Gibbs Sampling Version 0.5)”, Cambridge, England, 1997.

[19] R.L. Prentice, Linear rank tests with right censored data, Biometrika, 65,
(1978) 167–179.

[20] C.A.V. Tojeiro, F. Louzada-Neto, H. Bolfarine, A Bayesian analysis for ac-
celerated lifetime tests under an exponential power law model with threshold
stress, Journal of Applied Statistics, 31, (2004) 685–691.


