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1. Introdu
tion

This work 
orresponds to the talk [6℄, given by J. C. S. Sampaio, during the XXXIV

CNMAC - XXXIV Congresso Na
ional de Matemáti
a Apli
ada e Computa
ional

- September, 17-21 2012, Águas de Lindóia-SP, Brasil, where it was presented and

dis
ussed some re
ent results [5℄ with respe
t to how to obtain 
onservation laws

for an equation without a 
lassi
al Lagrangian.

It is well known that for equations arising from the Euler-Lagrange equations,

the 
elebrated Noether theorem provides an elegant way for �nding 
onserved quan-

tities for su
h equation, see [1, 17, 20℄. However, when it is 
onsidered equations

without variational stru
ture, it is impossible to apply Noether's approa
h. Then

the following question arises: how 
an one �nd a 
onserved ve
tor for an equation

without Lagrangians?

A
ross the last 
entury, many approa
hes have been proposed in order to over-


ame this problem. The interested reader is dire
ted to the referen
e [19℄, where

some of these developments were dis
ussed. In this paper we use the most re
ent

approa
h proposed in [12℄, where it was shown a general result 
onne
ting sym-

metries and 
onservation laws, in order to �nd 
onserved ve
tors for the general

equation

ut + αuux + βu2ux + γuxxx + µuxxxxx = 0. (1.1)
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Following [2℄, we would like to 
all this new formulation for �nding 
onserved

ve
tors as Ibragimov's theorem on 
onservation laws.

In this paper it is 
onsidered the equation (1.1) with the following restri
tions:

(α, β) 6= (0, 0) and (γ, µ) 6= (0, 0). In fa
t, in the 
ase whenever (γ, µ) = (0, 0) it is
obtained a parti
ular 
ase of the invis
id Burgers equation, whi
h was 
onsidered

in [2, 4℄. Whenever α = β = 0 it is obtained a linear equation and here we are

interested in nonlinear phenomena.

Apart from the previous mentioned equations, equation (1.1) in
ludes

• The 
elebrated KdV equation

ut + αuux + γuxxx = 0; (1.2)

• General Kawahara equation

ut + αuux + γuxxx + µuxxxxx = 0; (1.3)

• Simpli�ed modi�ed Kawahara equation

ut + βu2ux + µuxxxxx = 0; (1.4)

• Simpli�ed Kawahara equation

ut + αuux + µuxxxxx = 0 (1.5)

and

• Gardner equation

ut + 6(u+ u2)ux + uxxx = 0. (1.6)

All of these equations is 
oming from the 
elebrated KdV equation, whi
h was

dedu
ed by Korteweg and his student de-Vries for modeling shallow wave equations.

These equations are employed in Mathemati
al Physi
s in order to des
ribe a lot

of dispersive phenomena, su
h as plasma phenomena, while equations of the type

(1.2) are also used to model the Great Red Spot of Jupiter, see [21℄.

Although our main purpose is to revisit some of our previous results given in

[5, 21℄, in the present work we also present some new 
onservation laws for equa-

tions of the 
lass (1.1). Namely, the new 
onserved ve
tors derived by using the

developments [12, 15, 16℄ are

C0 = u2,

C1 =
2

3
αu3 + 2µuuxxxx − 2µuxuxxx + µu2

xx,

(1.7)

for the simpli�ed Kawahara equation (1.5), and

C0 = −u− u2,

C1 = 3u4 + 6u3 + 3u2 + 2uuxx + uxx − u2
x,

(1.8)
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for the Gardner equation (1.6).

The remaining of this paper is as the follows. In the next se
tion we revisit

the Ibragimov's theorem on 
onservation and the ne
essary tools to employ it for

�nding lo
al 
onserved ve
tors. Next, in the se
tion 3, we show that the 
lass of

equations (1.1) is nonlinearly self-adjoint. This allows us to �nd lo
al 
onservation

laws for these equations, whi
h will be done in the following se
tions. Some parts

of this review 
losely follow our referen
es [5, 21℄.

2. Ibragimov's theory

In this se
tion we revisit the basi
 tools about the re
ent developments started with

the fruitful work [12℄, where Ibragimov proved a new 
onservation theorem. Next we

introdu
e the re
ent 
on
ept of nonlinear self-adjointness, proposed by Ibragimov

in [15, 16℄.

This �eld, nowadays, is a ri
h bran
h in the �eld of group analysis and it has

been attra
ting the attention of a big number of resear
hers. Many of them are

interested in �nding nonlinearly self-adjoint properties of equations, as it 
an be

seen in [2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 22℄ and referen
es therein.

2.1. Adjoint equations and nonlinear self-adjointness

Let x = (x1, · · · , xn) be n independent variables, u = u(x) be a dependent variable.
The set of kth order derivatives of u is denoted by u(k), where k in a positive integer

number. Consider the set of fun
tions depending on x, u and u derivatives up to a

�nite order.

A lo
ally analyti
 fun
tion of a �nite number of the variables x, u and u deriva-

tives is 
alled a di�erential fun
tion. The highest order of derivatives appearing in

the di�erential fun
tion is 
alled the order of this fun
tion. The ve
tor spa
e of all

di�erential fun
tions of �nite order is denoted by A.

The formal sum

δ

δu
=

∂

∂u
+

∞
∑

j=1

(−1)jDi1 · · ·Dij

∂

∂ui1···ij

(2.9)

is the well known Euler-Lagrange operator.

Let F ∈ A be a di�erential fun
tion. From this fun
tion we 
an obtain a

di�erential equation

F (x, u, · · · , u(s)) = 0 (2.10)

and the following new di�erential fun
tion, 
alled formal Lagrangian, given by L =
vF , where v = v(x) is another dependent variable.

Equation (2.10) is said to be nonlinearly self-adjoint if the equation obtained

from the adjoint equation

F ∗(x, u, v, · · · , u(s), v(s)) :=
δL

δu
= 0 (2.11)
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by the substitution v = φ(x, u) with a 
ertain fun
tion φ(x, u) 6= 0 is identi
al with

the original equation (2.10), that is,

F ∗(x, u, v, u(1), v(1), · · · , u(s), v(s))
∣

∣

v=φ(x,u)
= 0. (2.12)

Whenever (2.12) holds for a 
ertain di�erential fun
tion φ su
h that φu 6= 0 and

φx 6= 0, equation (2.11) is 
alled weak self-adjoint.

In other words: equation (2.11) is said to be nonlinearly self-adjoint if there

exists a fun
tion φ = φ(x, u) su
h that

F ∗|v=φ = λ(x, u, · · ·)F, (2.13)

for some di�erential fun
tion λ = λ(x, u, · · ·).

2.2. Ibragimov's theorem on 
onservation laws

The following result was proved in [12℄.

Theorem 2.1 (Ibragimov's theorem on 
onservation laws). Let

X = ξi
∂

∂xi
+ η

∂

∂u

be any symmetry (Lie point, Lie-Bä
klund, nonlo
al symmetry) of equation (2.10)
and (2.11) be the adjoint equation to equation (2.10). The 
ombined system (2.10)
and (2.11) has the 
onservation law DiC

i = 0, where

Ci = ξiL+W

[

∂L

∂ui

−Dj

(

∂L

∂uij

)

+DjDk

∂L

∂uijk

− · · ·

]

+Dj(W )

[

∂L

∂uij

−Dk

(

∂L

∂uijk

)

+ · · ·

]

+DjDk(W )

[

∂L

∂uijk

− · · ·

]

+ · · ·

(2.14)

and W = η − ξiui.

2.3. Algorithm

Ibragimov's theorem on 
onservation laws 
an be resumed by the following algo-

rithm (see [12, 2℄ for further details): given a PDE

F = F (x, u, u(1) · · · , u(n)) = 0,

• we 
onstru
t a Lagrangian L = vF .

• From the Euler-Lagrange equations, the following system is obtained:

F (x, u, u(1) · · · , u(n)) = 0, (2.15)

F ∗(x, u, v, · · · , u(s), v(s)) = 0. (2.16)

• We 
onstru
t the 
onserved ve
tor given by (2.14).
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3. Nonlinearly self-adjoint 
lassi�
ation of the equa-

tion (1.1)

The following theorem was proved in [5℄ (see also [21℄).

Theorem 3.2. Equation (1.1), with (γ, µ) 6= 0 and (α, β) 6= (0, 0), is nonlinearly

self-adjoint.

Remarks: Equation (1.1) is also nonlinearly self-adjoint without the requested

hypothesis in the Theorem 3.2. The mentioned hypothesis only re�e
ts the non-

linearity of the equation and the fa
t that we are 
onsidering dispersive equations.

However, a straightforward 
al
ulation shows that we 
an remove them. We leave

the details to the interested reader. It 
an also be useful, on
e going in this dire
tion,

to see [2, 3, 4℄.

Proof. Let us denote the left side of (1.1) by

F = ut + αuux + γuxxx + µuxxxxx. (3.17)

Then, the adjoint equation to F = 0 is

F ∗ := −vt − (αu + βu2)vx − γvxxx − µvxxxxx = 0. (3.18)

Now we only must analyze the following two 
ases. Below, a1, a2 and a3 are arbi-

trary 
onstants.

• Assume β = 0 in (1.1). Then the substitution

φ(x, t, u) = a1(x− αtu) + a2u+ a3

in (3.18) makes the adjoint equation equivalent to the original equation.

• Now suppose β 6= 0 in (1.1). Substituting φ(x, t, u) = a1u+ a2 instead of v in

(3.18), we obtain a multiple of (1.1).

This proves our statement.

4. Non-lo
al 
onservation laws

Here we �nd nonlo
al 
onservation laws for the equation (1.1). We follow the

algorithm previously dis
ussed in Se
tion 2.3.

A
tually, the �rst two steps of su
h a mentioned algorithm have just been done

be
ause the formal Lagrangian had already been obtained while the adjoint equation

to (1.1) had also already been 
al
ulated and it is given by (3.18).
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With respe
t to the se
ond step, the 
omponents of the ve
tor are given by

C0 = τL+Wv,

C1 = ξL+W
[

v(αu + βu2) + γvxx + µvxxxx
]

−Dx(W )(γvx + µvxxx) +D2
x(W )(γv + µvxx)

−D3
x(W )(µvx) +D4

x(W )(µv),

(4.19)

where L = vF , W = η − τut − ξux and

X = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u

is any Lie point symmetry of (1.1).

The obtained 
onserved ve
tor depends on v be
ause it is a 
onserved ve
tor to

the system







ut + αuux + βu2ux + γuxxx + µuxxxxx = 0,

−vt − (αu+ βu2)vx − γvxxx − µvxxxxx = 0.

Su
h a 
onserved ve
tor C = (C0, C1) is, then, a nonlo
al 
onserved ve
tor.

5. Lo
al 
onservation laws

A

ording to Ibragimov's theorem on 
onservation laws (see also the 
orresponding

algorithm), a 
onserved ve
tor to (1.1) and (3.18) is C = (C0, C1), whose the


omponents are given by (4.19) and, as it was already pointed out, a nonlo
al


onserved ve
tor to the original equation.

In order to �nd lo
al 
onserved ve
tors, we use the Lie point symmetries found

in [18, 21℄ and the fa
t that under the substitutions given by Theorem 3.2, the

nonlo
al 
onserved ve
tors be
ome a lo
al 
onserved ve
tor. We illustrate this fa
t

at the same time that we pro
eed our 
al
ulation for establishing the �elds (1.7)

and (1.8).

5.1. Conservation law for the simpli�ed Kawahara equation

Con
erning the simpli�ed Kawahara equation (1.5), by using the dilational symme-

try

X = x
∂

∂x
+ 5t

∂

∂t
− 4u

∂

∂u
(5.20)
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found in [18℄, from (4.19) we obtain

C0 = −4vu− xvux + 5αtvuux + 5µtvuxxxxx,

C1 = xvut − 4αvu2 − 4µuvxxxx − µxuxvxxxx − 5αtvuut

−5µtutvxxxx + 5µuxvxxx + µxuxxvxxx + 5µtuxtvxxx

−6µvxxuxx − µxvxxuxxx − 5µtvxxuxxt + 7µvxuxxx

+µxvxuxxxx + 5µtvxuxxxt − 8µvuxxxx − 5µtvuxxxxt.

(5.21)

Substituting v = x− αtu into the 
omponents above, we arrived at

C0 = −2xu+ αtu2 +Dx

(

−x2u+ 3αxtu2 −
5

3
α2t2u3

)

+Dx

(

5µxtuxxxx − 5µtuxxx − 5αµt2uuxxxx + 5αµt2uxuxxx −
5

2
αµt2u2

xx

)

,

C1 = −αxu2 +
2

3
α2tu3 − 2µxuxxxx + 2µuxxx + 2αµtuuxxxx

−2αµtuxuxxx + αµtu2
xx +Dt

(

x2u− 3αxtu2 +
5

3
α2t2u3

)

Dt

(

−5µxtuxxxx + 5µtuxxx + 5αµt2uuxxxx − 5αµt2uxuxxx +
5

2
αµt2u2

xx

)

On
e transferred the term Dx(· · ·) from C0
to C1

, we �nd the 
onserved ve
tor

C = (C0, C1), where

C0 = −2xu+ αtu2,

C1 = −αxu2 + 2
3α

2tu3 − 2µxuxxxx + 2µuxxx + 2αµtuuxxxx

−2αµtuxuxxx + αµtu2
xx

for the simpli�ed Kahawara equation.

Now, substituting v = u into (5.21), it is obtained

C0 = −4u2 − xuux + 5αtu2ux + 5µtuuxxxxx,

C1 = xuut − 4αu3 − 12µuuxxxx − 5αtu2ut − 5µtutuxxxx + 12µuxuxxx+

5µtuxtuxxx − 6µ(uxx)
2 − 5µtuxxuxxt + 5µtuxuxxxt − 5µtuuxxxxt
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and then,

C0 = −
7

2
u2 +Dx

(

−
xu2

2
+

5

3
αtu3 + 5µtuuxxxx − 5µtuxuxxx +

5

2
µtu2

xx

)

,

C1 = −
7

3
αu3 − 7µuuxxxx + 7µuxuxxx −

7

2
µu2

xx

−Dt

(

−
xu2

2
+

5

3
αtu3 + 5µtuuxxxx − 5µtuxuxxx +

5

2
µtu2

xx

)

.

After a straightforward 
al
ulation and multiplying the �nal result by −7/2, it
is obtained the ve
tor (1.7).

5.2. Conservation law for the Gardner equation

In order to establish the 
onserved ve
tor (1.8) for the Gardner equation, we �rst

substitute the 
omponents of the following Lie point symmetry generator

X3 = (2x+ 6t)
∂

∂x
+ 6t

∂

∂t
− (2u+ 1)

∂

∂u

into the Eq. (4.19) with µ = 0, α = β = 6 and γ = 1. Thus

C0 = −6vt(6u+ 6u2)ux − 6vtuxxx − (2u+ 1)v − (2x+ 6t)vux,

C1 = (2x+ 6t)vut − (2x+ 6t)vuxxx

+(2u+ 1)(6u+ 6u2)v + (2u+ 1)vxx + (2x+ 6t)vxxux

+6t(6u+ 6u2)vut + 6tvxxut − 4vxux − (2x+ 6t)vxuxx

−6tvxuxt + 6vuxx + (2x+ 6t)vuxxx + 6tvuxxt.

(5.22)

Now, setting v = u into (5.22), it is obtained

C0 = −36tu2ux − 36tu3ux − 6tuuxxx − 2u2 − u− 2xuux − 6tuux,

C1 = 2xuut + 6tuut + 18u3 + 12u4 + 6u2 + 2uuxx + uxx + 36tu2ut

+36tu3ut + 6tutuxx − 4(ux)
2 − 6tuxuxt + 6uuxx + 6tuuxxt,

whi
h are equivalent to

C0 = −u− u2 −Dx(xu
2 + 3tu2 + 6tuuxx − 3t(ux)

2 + 9tu4 + 12tu3),

C1 = 3u4 + 6u3 + 3u2 + 2uuxx + uxx − (ux)
2

+Dt(xu
2 + 3tu2 + 6tuuxx − 3t(ux)

2 + 9tu4 + 12tu3).

Then, after re
koning, we get the ve
tor �eld (1.8).
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6. Con
lusion

In this review paper we have revisited some re
ent results 
onne
ting Lie symme-

tries and 
onservation laws for equations not ne
essarily being from Euler-Lagrange

equations. Moreover, we have illustrated our dis
ussion with some new 
onservation

laws obtained via Ibragimov's approa
h. Su
h 
onservation laws are established, at

least using su
h a new development, for the �rst time in the present review.

The interested reader 
an found more lo
al 
onservation laws for equations of

the type (1.1), where we established 
onservation laws for the general Kawahara

equation (1.3) and modi�ed Kawahara equation (1.5). Moreover, some 
onservation

laws for the KdV equation 
an also be established using those obtained results, see

also [16℄. More re
ently, some new 
lasses of evolution equations up to �fth order

have been dis
overed, see [7℄.

Resumo. Neste trabalho revisitamos alguns resultados re
entes sobre leis de 
on-

servação de uma 
lasse de equações evolutivas até quinta ordem.

Palavras-
have. Teorema de Ibragimov, leis de 
onservação, equações KdV de

quinta ordem.
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