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Abstract. In this work we revisit some recent results on conservation laws for a
class of fifth-order evolution equations up to fifth-order.
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1. Introduction

This work corresponds to the talk [6], given by J. C. S. Sampaio, during the XXXIV
CNMAC - XXXIV Congresso Nacional de Matemética Aplicada e Computacional
- September, 17-21 2012, Aguas de Lindéia-SP, Brasil, where it was presented and
discussed some recent results [5] with respect to how to obtain conservation laws
for an equation without a classical Lagrangian.

It is well known that for equations arising from the Euler-Lagrange equations,
the celebrated Noether theorem provides an elegant way for finding conserved quan-
tities for such equation, see [1, 17, 20]. However, when it is considered equations
without variational structure, it is impossible to apply Noether’s approach. Then
the following question arises: how can one find a conserved vector for an equation
without Lagrangians?

Across the last century, many approaches have been proposed in order to over-
came this problem. The interested reader is directed to the reference [19], where
some of these developments were discussed. In this paper we use the most recent
approach proposed in [12], where it was shown a general result connecting sym-
metries and conservation laws, in order to find conserved vectors for the general
equation
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Following [2], we would like to call this new formulation for finding conserved
vectors as Ibragimov’s theorem on conservation laws.

In this paper it is considered the equation (1.1) with the following restrictions:
(a, B) # (0,0) and (7, 1) # (0,0). In fact, in the case whenever (v, 1) = (0,0) it is
obtained a particular case of the inviscid Burgers equation, which was considered
in [2, 4]. Whenever o = § = 0 it is obtained a linear equation and here we are
interested in nonlinear phenomena.

Apart from the previous mentioned equations, equation (1.1) includes

e The celebrated KdV equation

U + QU + YUgzr = 0; (1.2)

General Kawahara equation

Simplified modified Kawahara equation

g + Bulug + Tz ——— | (1.4)

Simplified Kawahara equation
U + Uty + Plgprre = 0 (1.5)

and

Gardner equation
wy + 6(u 4 u?)up + Upze = 0. (1.6)

All of these equations is coming from the celebrated KdV equation, which was
deduced by Korteweg and his student de-Vries for modeling shallow wave equations.
These equations are employed in Mathematical Physics in order to describe a lot
of dispersive phenomena, such as plasma phenomena, while equations of the type
(1.2) are also used to model the Great Red Spot of Jupiter, see [21].

Although our main purpose is to revisit some of our previous results given in
[5, 21], in the present work we also present some new conservation laws for equa-
tions of the class (1.1). Namely, the new conserved vectors derived by using the
developments [12, 15, 16] are

CO = u?
9 (1.7)
Cl = gaug + 2Muummmm - 2Mumummm + N’U/imu
for the simplified Kawahara equation (1.5), and
CO = —u—u?
(1.8)
Cl = 3ut +6u + 3u® + 2utpy + Ugy — u2,
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for the Gardner equation (1.6).

The remaining of this paper is as the follows. In the next section we revisit
the Ibragimov’s theorem on conservation and the necessary tools to employ it for
finding local conserved vectors. Next, in the section 3, we show that the class of
equations (1.1) is nonlinearly self-adjoint. This allows us to find local conservation
laws for these equations, which will be done in the following sections. Some parts
of this review closely follow our references [5, 21].

2. Ibragimov’s theory

In this section we revisit the basic tools about the recent developments started with
the fruitful work [12], where Ibragimov proved a new conservation theorem. Next we
introduce the recent concept of nonlinear self-adjointness, proposed by Ibragimov
in [15, 16].

This field, nowadays, is a rich branch in the field of group analysis and it has
been attracting the attention of a big number of researchers. Many of them are
interested in finding nonlinearly self-adjoint properties of equations, as it can be
seen in [2, 3,4, 5,7, 8,9, 10, 11, 13, 14, 22] and references therein.

2.1. Adjoint equations and nonlinear self-adjointness

Let z = (a!,---,2") be n independent variables, u = u(x) be a dependent variable.
The set of kth order derivatives of u is denoted by u (), where k in a positive integer
number. Consider the set of functions depending on x,u and u derivatives up to a
finite order.

A locally analytic function of a finite number of the variables =, u and u deriva-
tives is called a differential function. The highest order of derivatives appearing in
the differential function is called the order of this function. The vector space of all
differential functions of finite order is denoted by A.

The formal sum

50 X, )
= 1D, .. -
— }Z:( 1Y/D;, -+ D (2.9)

Dy,
ou = 8ui1.,.ij

is the well known Euler-Lagrange operator.
Let ' € A be a differential function. From this function we can obtain a
differential equation
F(z,u, -, u) =0 (2.10)

and the following new differential function, called formal Lagrangian, given by £ =
vF, where v = v(x) is another dependent variable.

Equation (2.10) is said to be nonlinearly self-adjoint if the equation obtained
from the adjoint equation

5L

:5—u_

F*(z, 0,0, u(s), U(s)) : 0 (2.11)
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by the substitution v = ¢(z, u) with a certain function ¢(z,u) # 0 is identical with
the original equation (2.10), that is,

F* (2, u, v, (1), V1), -+ U(s)s ”<S>)‘v:¢<w,u> =0. (2.12)

Whenever (2.12) holds for a certain differential function ¢ such that ¢, # 0 and
¢ # 0, equation (2.11) is called weak self-adjoint.

In other words: equation (2.11) is said to be nonlinearly self-adjoint if there
exists a function ¢ = ¢(x,u) such that

F*|v:¢ = Az, u,--)F, (2.13)

for some differential function A\ = A(x,u,---).

2.2. Ibragimov’s theorem on conservation laws
The following result was proved in [12].

Theorem 2.1 (Ibragimov’s theorem on conservation laws). Let

13} 13}

oxt + "o

be any symmetry (Lie point, Lie-Bdicklund, nonlocal symmetry) of equation (2.10)
and (2.11) be the adjoint equation to equation (2.10). The combined system (2.10)
and (2.11) has the conservation law D;C* = 0, where

xX=¢

C L epaw [2E p (22N pop L
o= €£+W[8ui b; (anj>+D]Dkauijk }
oL oL
+D;(W) [W] — Dy, <6Uijk) +} (2.14)
oL
+D;Dy(W) [%_k —} + -
ij

and W =n — £lu,.

2.3. Algorithm

Ibragimov’s theorem on conservation laws can be resumed by the following algo-
rithm (see [12, 2| for further details): given a PDE

F=F(x,u,uqy- -, um) =0,
e we construct a Lagrangian £ = vF.
e From the Euler-Lagrange equations, the following system is obtained:
F(z,u,ugy -, umy) =0, (2.15)
F*(z,u,v, -+, u(s),v(s)) = 0. (2.16)

e We construct the conserved vector given by (2.14).
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3. Nonlinearly self-adjoint classification of the equa-
tion (1.1)
The following theorem was proved in [5] (see also [21]).

Theorem 3.2. Equation (1.1), with (v,u) # 0 and (o, 8) # (0,0), is nonlinearly
self-adjoint.

Remarks: Equation (1.1) is also nonlinearly self-adjoint without the requested
hypothesis in the Theorem 3.2. The mentioned hypothesis only reflects the non-
linearity of the equation and the fact that we are considering dispersive equations.
However, a straightforward calculation shows that we can remove them. We leave

the details to the interested reader. It can also be useful, once going in this direction,
to see [2, 3, 4].

Proof. Let us denote the left side of (1.1) by
F = u + auuy + YUz + Mlzrrae- (3.17)
Then, the adjoint equation to F' =0 is
F*:=—v; — (au + Bu2)vm — YVpze — Mzzzzs = 0. (3.18)

Now we only must analyze the following two cases. Below, a1, a2 and as are arbi-
trary constants.

e Assume = 01in (1.1). Then the substitution
oz, t,u) = a1 (xr — atu) + agu + as
in (3.18) makes the adjoint equation equivalent to the original equation.

e Now suppose 3 # 0 in (1.1). Substituting ¢(z,t,u) = aju+ as instead of v in
(3.18), we obtain a multiple of (1.1).

This proves our statement.

4. Non-local conservation laws

Here we find nonlocal conservation laws for the equation (1.1). We follow the
algorithm previously discussed in Section 2.3.

Actually, the first two steps of such a mentioned algorithm have just been done
because the formal Lagrangian had already been obtained while the adjoint equation
to (1.1) had also already been calculated and it is given by (3.18).
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With respect to the second step, the components of the vector are given by
C’' = 1L+ Wy,

C' = &L+ W [v(ou+ Bu?) + Yge + [1Vs0aa]
(4.19)
—Dy (W) (v0g + p0gg0) + D2(W) (0 + p10g4)

—D3(W)(pvz) + Dyp(W) (),

where L =vF, W =n — 1tu; — uy and

0 9] 0
X =7(z,t,u) = tu)— tu)—
(@t 0) g + 6,1 u) 5 + (@t )
is any Lie point symmetry of (1.1).
The obtained conserved vector depends on v because it is a conserved vector to
the system

Ut + QUulUg + ﬂuzum + YUzza + HUgrzza = 07
—Ut — (au + ﬁu2)vm — VVzzx — HUzzzxx = 0.

Such a conserved vector C' = (C?, C1) is, then, a nonlocal conserved vector.

5. Local conservation laws

According to Ibragimov’s theorem on conservation laws (see also the corresponding
algorithm), a conserved vector to (1.1) and (3.18) is C = (CY C'), whose the
components are given by (4.19) and, as it was already pointed out, a nonlocal
conserved vector to the original equation.

In order to find local conserved vectors, we use the Lie point symmetries found
in [18, 21| and the fact that under the substitutions given by Theorem 3.2, the
nonlocal conserved vectors become a local conserved vector. We illustrate this fact
at the same time that we proceed our calculation for establishing the fields (1.7)
and (1.8).

5.1. Conservation law for the simplified Kawahara equation

Concerning the simplified Kawahara equation (1.5), by using the dilational symme-
try

0 0 0
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found in [18], from (4.19) we obtain

C’ = —dvu— 2vUuy + Satvuty + St Usprse,
C' = zvus — 4ovu? — 4pVppes — UEULVzpae — DOTVUUE
_5,Uftutvzzzz + 5,Uuzvmmm + XUz Vg + 5/Ltumtvmmm (521)

_GUUzzumm - ,U:Evzzuzzz - 5,Utvzzummt + 7,UJ'Umummm
+u$vmummmm + 5Mtvmummmt - SMUUmmww - 5Ntvummmmt-

Substituting v =  — atu into the components above, we arrived at

5
C° = —2zu+atu’+ D, <—x2u + 3axtu® — §a2t2u3)

5
+D, <5,u3:tumm — SutUyyy — 5aut2uumm + 5aut2umuzm — Eoz,thin),

2
o= _O“/L'UQ + §a2tu3 = 2UTUg gz + 2UUzer + 20UEUUL Lo
2 2 2,9 9,03
—2aptuztye, + aptus, + Dy | 2°u — 3axtu” + goz t“u

5
Dt <_5thuwwww + 5/'LtuLIJLELIJ + 5aﬂt2uummmw - 50‘Mt2umuwww + Eaut2ui1>

Once transferred the term D, (---) from C° to C*, we find the conserved vector
C = (C° C"), where

C’ = —2zu+ atu?,
' = —oxu? + %a2tu3 — 2UTUzzer + 2UUzze + 20UEUUL L
20t U Ug gz + oz,utuim

for the simplified Kahawara equation.
Now, substituting v = u into (5.21), it is obtained

C° = —4u? — zuu, + Satuuy, + Sututseses,
C' = zuu —4dou® — 12p0t g — Satulu, — St Ut Ugprr + 120UpUgr e+

5Mtumtummm - GM(U’LEI)Q - 5Mtummummt + 5Mtumuwwmt - 5Mtuummmmt
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and then,
7 2 5 5
' = ——u?+D, _ + Zatu® + Sututiypee — Bty Usse + —utuim ,
2 2 3 2
1 73 2
C = —gOé’U, - 7/““1/1111 + 7Mumummm - EMUI;E

2

) 5
_Dt <_% + gatu?’ + 5Mtuummmm - 5Ntuwummm + §Ntuiz> .

After a straightforward calculation and multiplying the final result by —7/2, it
is obtained the vector (1.7).

5.2. Conservation law for the Gardner equation

In order to establish the conserved vector (1.8) for the Gardner equation, we first
substitute the components of the following Lie point symmetry generator

0 0 0
X3 =(2 t)— t— — (2 1)—
3 (x+6)6$+6 e (2u+ )8u
into the Eq. (4.19) with 4 =0, « = 8 =6 and v = 1. Thus
C’ = —6vt(6u + 6u?)uy — 6vtuge, — (2u + 1)v — (22 + 6t)vu,,
Cl = (22 +6t)vuy — (20 + 6)VUzpy
+(2u + 1)(6u + 6u?)v + (2u + 1) vz + (22 + 6t) Uz Uy (5.22)

+6t(6u + 6u?)vuy + 6tV — dvpty — (22 + 6)VpUss

—6tvp Uzt + 6VULy + (22 + 68)VUggy + 6EVULe.
Now, setting v = w into (5.22), it is obtained
C = —36tulu, — 36tuduy — 6tutgey — 2u% — u — 2TUUL — 6tuu,,

C' = 2zuuy + 6tuuy + 18ud + 12u* + 6u? + 2utyy + Uge + 36ty

+36tuduy + 6tustp, — 4(ug)? — 6tugts; + 6Uulyy + 61Uy,
which are equivalent to
CY = —u—u®— Dy(zu?® + 3tu® + 6tuny, — 3t(uy)? + 9tu* + 12tu?),
Cl' = 3ut 4 6ud 4 3u? + Uty + Upr — (uz)?
+Dy(zu? + 3tu? + 6tun,, — 3t(ug)? + 9tut + 12tu?).

Then, after reckoning, we get the vector field (1.8).
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6. Conclusion

In this review paper we have revisited some recent results connecting Lie symme-
tries and conservation laws for equations not necessarily being from Euler-Lagrange
equations. Moreover, we have illustrated our discussion with some new conservation
laws obtained via Ibragimov’s approach. Such conservation laws are established, at
least using such a new development, for the first time in the present review.

The interested reader can found more local conservation laws for equations of
the type (1.1), where we established conservation laws for the general Kawahara
equation (1.3) and modified Kawahara equation (1.5). Moreover, some conservation
laws for the KdV equation can also be established using those obtained results, see
also [16]. More recently, some new classes of evolution equations up to fifth order
have been discovered, see [7].

Resumo. Neste trabalho revisitamos alguns resultados recentes sobre leis de con-
servagao de uma classe de equacgoes evolutivas até quinta ordem.

Palavras-chave. Teorema de Ibragimov, leis de conservagao, equagoes KdV de
quinta ordem.
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