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ABSTRACT. The simulation of quantum algorithms in classical computers demands high processing

and storing capabilities. However, optimizations to reduce temporal and spatial complexities are promising

and capable of improving the overall performance of simulators. The main contribution of this work con-

sists in designing optimizations to describe quantum transformations using Quantum Processes and Partial

Quantum Processes, as conceived in the qGM theoretical model. These processes, when computed on the

VPE-qGM execution environment, reduce the execution time of the simulation. The performance evaluation

of this proposal was carried out by benchmarks that include sequential simulation of quantum algorithms

up to 24 qubits and instances of Grover’s Algorithm. The results show improvements in the simulation of

general, controled transformations since their execution time was significantly low, even for systems with

several qubits. Furthermore, a solution based on GPU computing for dealing with transformations that still

have a high simulation cost in the VPE-qGM is also discussed.

Keywords: Quantum Simulation, VPE-qGM, Quantum Processes.

1 INTRODUCTION

Quantum Computing (QC) predicts the development of quantum algorithms that, in various sce-
narios, are much faster than their classical versions [1, 2]. However, such algorithms can only be
efficiently executed on quantum computers, which are currently unavailable for general purpose
use. In this context, quantum simulation softwares, such as [3, 4, 5, 6] and [7], were proposed so
researchers can anticipate the behaviors of the algorithms when executed on quantum hardware.
Despite all the work already done, several approaches for simulation can still be explored.

The VPE-qGM (Visual Programming Environment for the Quantum Geometric Machine
Model) [8] is a quantum simulator under development including both characterizations, visual
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modeling, and distributed simulation of quantum algorithms, showing the application and evo-
lution of quantum computing through integrated graphical interfaces. The current focus of this
project is related to the exponential growth in the matrices associated to multi-qubit transforma-
tions, where the efforts are towards the reduction of the temporal complexities associated to the
execution of a muti-qubit quantum transformation.

In this context, the main contribution of this work is the extension of the VPE-qGM simula-
tion capabilities through the implementation of two concepts: Quantum Process (Q P) and
Quantum Partial Process (Q P P). According to the specifications of the qGM model, these
new concepts can be explored for modeling quantum transformations and reducing the compu-
tations in a simulation. They are the mathematical structure underling the modeling of quantum
parallelism in massive parallel architectures, such as GPUs (Graphic Processing Units), as de-
scribed in [9].

This article is structured as follows: Section 2 comprehends the conceptual background related
to this work. The theory and implementation regarding the QPs and QPPs are presented in Sec-
tion 3. Section 4 contains the performance analysis of the simulation of QPs and QPPs. Discus-
sions concerning the results and main contributions of this work are presented in Section 5.

2 PRELIMINARY

Some concepts of QC are necessary to understand the contribution proposed in this work.
Thus, an introduction of quantum computing and the qGM (Quantum Geometric Machine)
model [10] are presented in the following subsections.

2.1 Quantum Computing

In QC, the qubit is the basic information unit, being the simplest quantum system, defined by a
unitary and bi-dimensional state vector. Qubits are generally described in Dirac’s notation [11],
by |ψ〉 = α|0〉 + β|1〉. The coefficients α and β are complex numbers for the amplitudes of the
corresponding states in the computational basis (space states). These coefficients must respect
the condition |α|2 + |β|2 = 1, which guarantees the unitarity of the state vector of the quantum
system represented by (α, β)t .

The state space of a quantum system with multiple qubits is obtained by the tensor product of the
space states of its subsystems. Considering a quantum system with two qubits, |ψ〉 = α|0〉+β|1〉
and |ϕ〉 = γ |0〉 + δ|1〉, the state space comprehends the tensor product |ψ〉 ⊗ |ϕ〉, described by
α · γ |00〉 + α · δ|01〉 + β · γ |10〉 + β · δ|11〉.
Transition states in a N -dimensional quantum system is performed by unitary quantum transfor-
mations, defined by square matrices of order N (2N components since N is the number of qubits
in the system). The matrix notation of Hadamard and its application over a one-qubit system are,
respectively, given as

H = 1√
2

(
1 1
1 −1

)
and H |ψ〉 = 1√

2

(
1 1
1 −1

)
×
(
α

β

)
= 1√

2

(
α + β
α − β

)
. (2.1)
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Quantum transformations simultaneously applied to different qubits are obtained by the applica-
tion of the tensor product between the corresponding matrices, as in the following example:

H⊗2 = 1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)
= 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎠ . (2.2)

Besides the multi-dimensional transformations obtained by the tensor product, controlled
transformations can also be used in quantum systems. The CNOT transformation acts over two
qubits |ψ〉 and |ϕ〉, applying the NOT (Pauli X) transformation to one of them (target qubit),
considering the current state of the other (control). Figure 1(a) shows the matrix notation of the
CNOT transformation and its application to a generic two-qubit quantum state. The correspond-
ing representation (quantum gate) in the quantum circuit model is presented in Figure 1(b).

(a) Evolution of quantum state (b) Quantum circuit

Figure 1: Representations of the CNOT gate.

By the composition and synchronization of quantum transformations, computations exploring
the potentialities of quantum parallelism are created. However, the exponential increase of mem-
ory usually arises in such computations. As a consequence, there is a loss of performance in the
simulation of multidimensional quantum systems. Therefore, optimizations for efficient repre-
sentation of multi-qubit quantum transformations are necessary.

2.2 qGM Model

The qGM model follows the concepts of the domain theory closely related to the Girard’s coher-
ent spaces [12]. The objects of the processes domain D∞, as introduced in [13] and [14], define
coherent sets which provide interpretation for possibly infinite quantum processes. The processes
and states are labeled by points in a geometric space, which characterizes the computational basis
as an n-dimensional subspace of the Hilbert (H) space.

In the qGM model, an elementary process (EP) may read data from many memory positions
(state space), but can only write in one. For example, in the application H |ψ〉, described in (2.1),
two classical operations are executed. These operations correspond to the computation defined
by each component vector of the matrix H and generate the new amplitudes of the state vector.
The Q P for the H transformation is obtained by the synchronization of two EPs associated
to each one of these operations. During the simulation, both EPs are simultaneously executed,
modifying the data in the memory positions. The first memory position, labeled as the state |0〉

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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of the computational basis, stores α+β√
2

. Similarly, the second memory position, labeled as |1〉,
receives the α−β√

2
amplitude. Such execution is performed accordingly to the behavior of the

transformation, simulating the evolution of the quantum system.

The interpretation of QPPs is obtained from the partial application of a quantum gate due to the
existence of uncertainties related to some sets of vectors.

Consider the gate H⊗2 defined in (2.2). Each single subset in this construction interprets a Q P P
corresponding to a matrix with only one defined line, and all the others being unknown (in-
dicated by the bottom element ⊥). Considering as context the elements of the computational
basis (|00〉, |01〉, |10〉, |11〉), it is possible to obtain the final global state |�1〉 by the union (inter-
preting the amalgamated sum on the process domain of qGM model) of states. By this statement,
it is possible to define partial states as in the following matrix-notation:

|�0.x
1 〉⊥ = H⊥ ⊗ H |�0〉 =

⎛
⎝ 1√

2
1√
2

⊥ ⊥

⎞
⎠⊗

⎛
⎝ 1√

2
1√
2

1√
2
−1√

2

⎞
⎠
⎛
⎜⎜⎜⎝

0

1
0
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2
−1
2

⊥
⊥

⎞
⎟⎟⎟⎟⎠

|�1.x
1 〉⊥ = H⊥ ⊗ H |�0〉 =

⎛
⎝ ⊥ ⊥

1√
2
−1√

2

⎞
⎠⊗

⎛
⎝ 1√

2
1√
2

1√
2
−1√

2

⎞
⎠
⎛
⎜⎜⎜⎝

0
1

0
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
⊥
⊥
1
2
−1
2

⎞
⎟⎟⎟⎟⎠

Both states |�0.x
1 〉⊥ and |�1.x

1 〉⊥ are approximations of |�1〉 = 1√
2
(1,−1, 1,−1)t .

Although it is not the focus of this work, the qGM model provides interpretation for other quan-
tum transformations, such as projections for measure operations.

3 QPPS: A PROPOSAL FOR OPTIMIZATION OF QUANTUM SIMULATION IN THE
VPE-QGM

The VPE-qGM environment is being developed aiming at the support for modeling and dis-
tributed simulation of algorithms from QC, considering abstraction of the qGM model. By fol-
lowing such abstractions, the concept of Quantum Process was implemented in the execution
library of the VPE-qGM, called qGM-Analyzer.

The main extensions consider the representation of controlled and non-controlled transforma-
tions, and related possible synchronization. The specifications of these and other new features
are described in the following subsections.

3.1 Non-Controlled Quantum Gates

A component Q P is able to model a quantum gate. Figure 2 shows a Q P associated to a three-
dimensional quantum system, including its representation using EPs and the structure of such
component in the qGM-Analyzer.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)



�

�

“main” — 2014/2/14 — 16:49 — page 403 — #5
�

�

�

�

�

�

MARON, REISER, PILLA and YAMIN 403

Figure 2: QP and its representation by applying EPs.

In Figure 2, ML stores the matrices associated with quantum transformations. Each line in ML
is generated by functions, which are indicated in the second column of the Q P T able. These
functions (U0, U1 e U2) describe the corresponding quantum transformation of the application
modeled in the VPE-qGM.

The tuples of each line are obtained by changing the values of the parameters x1 and x2. The
first tuple corresponds to the value obtained by the scalar product between the corresponding
functions. The second indicates the column in which the value will be stored.

The matrix-order in ML is defined from the number of functions (n) grouped together. In Fig-
ure 2, the first matrix in ML, indicated by M1, has n = 2. Similarly, M2 has n = 1.

It is interesting that the order of each matrix in ML can be arbitrarily determined. Although, there
is an exponential growth in memory consumption. Hence, a balance between the order and the
number of matrices in ML (|M L |) interferes directly in the performance of an application.

Besides the ML, it is necessary to create a list (see in (3.1)) containing auxiliary values for
indexing the amplitudes of the state space, which must be multiplied by each value of the matrices
in ML. In such list, q indicates the total number of qubits in the quantum application.

sizesList = [2q−n, 2q−(2∗n), . . . , 2q−(|M L|∗n)] (3.1)

Based on the concept of partial processes defined as partial objects in the qGM model, it is
possible to split the Q P described in Figure 2 in two QPPs. Figure 3 contains the description
of the Q P P0, which is responsible for the computation of all new amplitudes of the states in
the subset of memory positions MQ P P0 = {0, 1, 2, 3}. Similarly, the Q P P1 is responsible for
computing the amplitudes in the complement set of MQ P P0 , indicated as MQ P P1 = {4, 5, 6, 7},
which is performed independently from the execution of the Q P P0.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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The QPPs contribute with the possibility of establishing partial interpretations of a quantum

transformation. Complementary QPPs (that interpret distinct line sets) can be synchronized and
executed independently (in different processing nodes of a multiprocessor system). The bigger
the number of QPPs synchronized, the smaller is the computation executed by each one, result-

ing in a low-cost of execution.

3.2 Definition of Controlled Quantum Gates

For non-controlled quantum gates, it is possible to model all the evolution of the global state of

a quantum system with a single Q P. However, this possibility can not be applied to controlled
quantum gates.

The complete description of CNOT transformation is obtained through the expressions in
Eq. (3.2), which defines a set of QPPs, called QPP Set. QPPs for the CNOT transformation

have their structures illustrated in Figure 4. The Q P P1, in Figure 4(a) and associated to Ex p1,
describes the evolution of the states in which the state of the control qubit is |1〉 (requiring the
application of the Pauli X transformation to the target qubit). The evolution of the states in which

the control qubit is |0〉 is modeled by Ex p2 generating the Q P P2, illustrated in Figure 4(b). As
these states are not modified, the execution of the Q P P2 is not mandatory.

Ex p1 = C(1), X Ex p2 = C(0), Id (3.2)

(a) Q P P1: change amplitudes (b) Q P P2: do not change amplitudes

Figure 4: QPPs for the modeling of the CNOT gate.

In general, |Q P P Set | = |Ex p| = 2nC , where nC is the total number of control qubits in
all gates applied. However, it is only necessary the creation/execution of the QPPs in a sub-

set (QPP Subset) of QPP Set. If only one controlled gate is applied, |Q P P Subset | = 1. When
nC controlled qubits are considered in a synchronization of controlled gates, |Q P P Subset | =
2nC − 1.

Now, consider the synchronization of CNOT transformation, as shown in Figure 5(a). By

VPE-qGM environment, this configuration is modeled using the expressions in (3.3). Hence,
|Q P P Set | = 4. However, the Q P P4, associated to the expression Ex p4, does not change any
amplitude and should not be created/executed.

Ex p1 = C(1), X,C(1), X Ex p2 = C(1), X,C(0), Id

Ex p3 = C(0), Id,C(1), X Ex p4 = C(0), Id,C(0), Id
(3.3)

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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In a synchronization mixing controlled and non-controlled gates (different from Id), all the

amplitudes are modified. Hence, Q P P Subset = Q P P Set . The configuration illustrated in
the Figure 5(b) is modeled by the expressions in (3.4).

Ex p1 = C(1), X, H and Ex p2 = C(0), Id, H (3.4)

Thus, it means that two QPPs, identified by Q P P1 and Q P P2, are associated to the expres-
sions in Ex p1 and Ex p2, respectively. However, it is not possible to discard the execution of
the Q P P2, once it modifies the amplitudes of some states. Those changes are due to the H

transformation, which is always applied to the last qubit, despite the control state of the CNOT
transformation.

(a) Two CNOT’s (b) CNOT and H gates

Figure 5: Modeling synchronization of controlled gates.

3.3 Recursive Function

After building the QPPs, a recursive operator is applied to the matrices in ML for computing the

amplitudes of the new global state of the quantum system. This operator dynamically generates
all values associated to the resulting matrix obtained by the tensor product of the transformations,
defining the quantum application. Besides, a value indexing the amplitude is also generated. The

algorithmic description of this procedure with some optimizations is shown in Figure 6.

The execution time of this algorithm grows exponentially when new qubits are added. When
analyzing the use of QPs and QPPs exclusively for the representation of quantum gates, there is
a high-cost related to temporal complexity, specially when Hadamard gates are applied. Such

cost reflects directly in the execution time. However, this approach presents a low-cost related to
spatial complexity, once the matrices stored during the execution have maximum size of 32×32.

4 PERFORMANCE ANALYSIS OF THE OPTIMIZATIONS

For validation and performance analysis of the simulation with QPs and QPPs, the following
three study-cases were considered:

C1: Reversible circuit benchmarks from [15];

C2: Hadamard gates up to 14 qubits;

C3: Instances of Grover’s algorithm up to 14 qubits.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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if matri x Index = numMatrices − 1 then
for l = 0 to si ze(Matrices[matri x Index]) do

res ← 0;
line ← Matrices[matri x Index][l][0];
linePos ← Matrices[matri x Index][l][0];
for column = 0 to si ze(line) do

pos ← basePos+ line[column][1];
res ← res + (partialV alue × line[column][0] × memory[1][pos]);

end for
wri tePos ← mem Pos + (linePos × si zesList[matri x Index]);
res ← res + memory[0][wri tePos];
memory[0][wri tePos] ← res;

end for
else

for l = 0 to si ze(Matrices[matri x Index]) do
line ← Matrices[matri x Index][l][1];
linePos ← Matrices[matri x Index][l][0];
for column = 0 to si ze(line) do

next basePos← basePos+ (line[column][1] × si zesList[matri x Index]);
next partialV alue← partialV alue × line[column][0];
ApplyV alues(Matrices, numMatrices, si zesList,memory,

next partialV alue,matri x Index + 1, next basePos,

mem Pos + (linePos × si zesList[matri x Index]));
end for

end for
end if

Figure 6: Algorithm for the execution of the computations over QPs and QPPs.

The evaluation with benchmarks C1 and C2 considered 10 simulations for each study-case,
and the average of execution time and memory consumption were measured. For C3, only

one execution of each instance of Grover’s algorithm was performed, however each step of the
simulation was monitored and therefore several samples of the simulation time for each step
were collected. From those, the average for the simulation time associated with each step was

obtained. The hardware considered for each scenario is characterized as follows:

C1 and C2: Core i5-2410M, 4 GB RAM, Python 2.7 and Ubuntu 11.10 64 bits;

C3: Core i7-3770, 8 GB RAM, Python 2.7 and Ubuntu 12.04 64 bits.

4.1 Reversible Circuits and Hadamard Gates

Execution time and memory usage were monitored. The main performance comparison was
made against the previous version of the qGM-Analyzer, which supports the simulation of quan-

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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tum algorithms using EPs, considering the optimizations described in [16]. The main features of

each algorithm and the results obtained are presented in Tables 1 and 2.

Table 1: Quantum algorithms simulated using QPPs.

Algorithm Qubits Gates
Simulation w/QPPs Simulation w/EPs

Time (s) Mem (MB) Time (s) Mem (MB)

9symd2 12 28 0.400 12 38.805 12

g f 24 12 19 0.236 12 26.352 12

g f 25 15 29 1.328 13 372.488 13

g f 26 18 41 11.264 24 5081.553 22

g f 27 21 55 135.013 92 NS1 NS

g f 28 24 85 1532.015 524 NS NS

ham15 1 15 132 6.872 13 1778.170 13

ham15 2 15 70 4.708 13 925.319 13

ham15 3 15 109 8.436 13 1400.632 13

mod1024adder 20 55 44.099 60 NS NS

rc adder 16 19 2.358 15 549.079 14

NS: Not Supported. Simulation time over 4 hours.

Table 2: Quantum algorithms simulated using QPs.

Algorithm Qubits Gates
Simulation w/QPs Simulation w/EPs

Time (s) Mem (MB) Time (s) Mem (MB)

H⊗11 11 11 6.816 12 7.882 12

H⊗12 12 12 25.292 12 28.281 12

H⊗13 13 13 97.401 12 111.572 12

H⊗14 14 14 348.923 12 496.934 12

Quantum algorithms up to 24 qubits were simulated. The memory consumption was higher
for the new proposal due to slightly more complex structures necessary to represent the new

components. However, the trade off between memory usage and execution time is positive for
the new approach.

As the optimizations regarding QPs and QPPs only affect quantum gates, the high memory cost is
due to the storage of the amplitudes of the quantum system. This structure limits the VPE-qGM

to the simulation of algorithms with approximately 25 qubits in a 4GB R AM machine. The
improvement for controlled operations is due to the optimization focused on the identification of
QPPs that change amplitudes in the spaces state, being different of the EPs, which recomputes

even the amplitudes that remain unchanged. For the Hadamard gates, an inferior improvement
was obtained since all the amplitudes are modified. However, the reduction of 29% in simulation
time was due to the generation of all elements in the same Q P, reducing the simulation overhead.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Despite the different sizes of the state vectors for H⊗11, H⊗12, H⊗13 and H⊗14, the memory

usage remained the same (12 MB). This behavior is explained by the memory management of
the Python interpreter. For all Python processes, an initial 12 MB memory space is allocated,
even if the process execution requires less. As the data referred to memory usage presented in the

Tables 1 and 2 was obtained using the top software, only the total amount of memory allocated to
the process was exhibited instead of the actual space occupied by allocation calls. For algorithms
with more than 12 qubits, which generate bigger state vectors, the Python interpreter dynamically

allocates more memory when necessary.

4.2 Grover’s Algorithm Simulation

The simulation of the Grover’s algorithm follows the circuit described in [17]. Herein, the focus
is in the simulation time since the memory consumption follows the values previously presented

in Table 2.

Table 3 describes the number of iterations of the Grover’s (G) operator, the total number of
simulation steps generated and the total simulation time. The G operator is comprised by:

• U f : oracle that applies a controlled transformation to all qubits;

• 2|ψ〉〈ψ | − I : amplitude amplification operator with five steps as defined in [17].

Table 3: Grover’s Algorithm Simulation.

Algorithm Iterations Number of Steps Simulation Time (s)

Grover 10 qubits 17 103 21.635

Grover 11 qubits 25 151 116.226

Grover 12 qubits 35 211 630.203

Grover 13 qubits 50 301 3437.802

Grover 14 qubits 71 427 20914.590

The highest standard deviation for these simulations was 0.29% of the average, measured for the
Grover 10 qubits. As it can be seen, due to the many steps necessary, the simulation time suffers
an exponential increase when systems with more qubits are simulated.

A more detailed analysis of each step of the Grover’s algorithm reveals what generates this
exponential increase. Figure 7 presents the amount of computation time required by each step of
Grover’s algorithm. The Initialization step, comprised by Hadamard gates, accounts for at most

5% of the total simulation time, for the system with 12 qubits. As stated in the previous sections,
the Hadamard gate has the highest computational cost in the VPE-qGM. However, in this case
the influence over the total simulation time is not higher since the Initialization step is executed
only once.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Figure 7: Computation time required by each step of Grover’s algorithm

The Oracle is applied at each iteration of G, but it does not significantly affect the total time due
to partial execution with QPPs.

In particular, one can observe that:

(i) Steps from 1 to 5 refer to the amplitude amplification operator;

(ii) Steps 2 and 4 yield a more significant computation than controlled operators, since in the

global context of the simulation they must be fully executed;

(iii) Step 3 is slightly more complex than the Oracle, but as it is also described in terms of
QPPs, an efficient execution is obtained;

(iv) Steps 1 and 5 account for the greatest shares of the total simulation time. Being described
by many Hadamard gates and executed at each iteration of the G operator, they lead to a
scenario where a transformation defined by H⊗13 ⊗ Id is applied 854 times during the

simulation (427 times for each step).

4.3 Related Work Results

The state-of-art in sequential simulation of quantum algorithms, characterized by the works
of [7] and [6], represents the best performance reference for our work. As we do not have

access to these simulators yet, simulations of these alternative software in our own hardware
was not performed and therefore a direct performance comparison is not possible. However,
it is possible to perform an approximated performance comparison of the VPE-qGM with the

QuIDDPro simulator according to the results presented in [7]. The simulated circuits include the
following: ham15 1, ham15 2, ham15 3, rc adder, and 9symd2. It is important to note that
those results were obtained using a different hardware configuration (Athlon 1.2 GHz processor

with 1GB of RAM).

The simulation time and memory usage in the QuIDDPro simulator, described in [7], are better
than those obtained in the VPE-qGM. Such results can be justified due two characteristics of
the VPE-qGM:
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• The former is related to Python language, which is interpreted and, consequently, slower

than C, used in the QuIDDPro;

• The latter consists in the absence of optimizations for the storage of the state space in the
VPE-qGM, which is responsible for the high memory usage.

The results presented in [6] included some stabilizer circuits and factorization algorithms, which

yet are not fully supported in the VPE-qGM environment. Thus, no comparison with PVLIB
was performed.

4.4 Expectations for GPU Computing

As discussed in Section 4.2, the simulation time of Grover’s algorithm is highly affected by
the Hadamard gates applied during the amplitude amplification operator. As our solution does
not consider gate-by-gate simulation, currently the problem of high computational cost is being

treated by the highly parallel architecture of GPUs.

Our first results in this regard, presented in [9], comprehends the simulation of Hadamard gates
up to 21 qubits. Since this implementation is in its initial stages, algorithms such as Grover are
not supported yet. However, as its computational cost is directly affected by the Hadamard gates,

it is possible to estimate how it should perform on the parallel simulation on the GPU.

Table 4 shows results from simulations of Hadamard gates using the Python sequential ap-
proach, presented in this work, and a GPU simulation described in [9]. The speedups reflect
the efficiency of the parallel simulation and provide an approximation of the simulation time for

an instance of the Grover’s algorithm. As ≈ 97% of the Grover’s simulation time is spent on
execution of Hadamard gates, it is feasible to state that a similar speedup may be obtained in the
Grover’s parallel simulation in the GPU.

Table 4: Simulations of Hadamard gates with sequential
and parallel approaches.

Transformation Sequential (s) GPU (s) Speedup

H⊗10 1.142 0.001 1142

H⊗11 4.383 0.001 4383

H⊗12 17.402 0.008 2175

H⊗13 68.956 0.020 3447

H⊗14 285.241 0.085 3355

H⊗15 1140.114 0.299 3813

5 CONCLUSION

The VPE-qGM environment introduces a novel approach for the simulation of quantum algo-
rithms in classical computers. Besides the availability of graphical interfaces for modeling and

Tend. Mat. Apl. Comput., 14, N. 3 (2013)



�

�

“main” — 2014/2/14 — 16:49 — page 412 — #14
�

�

�

�

�

�

412 QUANTUM PROCESSES: A NOVEL OPTIMIZATION FOR QUANTUM SIMULATION

simulation of the algorithms, this environment supports the simulation of algorithms up to 24

qubits. This limit is established by the memory consumption due to the storage of the state vec-
tor of the algorithm.

For Hadamard gates, the limitation is related to the exponential growth in the simulation time.
In our current hardware, the limit for Hadamard gates is appropriately 16 qubits. The simulation

of controlled quantum transformations has the benefit of a reduced number of operations in order
to simulate state evolution. Hence, such simulation up to 24 qubits is possible.

Considering the state-of-art in quantum simulation, even after the optimizations described in
this work, the best simulators available still outperforms the VPE-qGM. However, new improve-

ments can be developed in the VPE-qGM to handle memory consumption and execution time.
By exploring the visual tools provided by the VPE-qGM and its integration with optimized li-
braries, this environment becomes an intuitive platform for the development and study of quan-

tum algorithms.

With the recent development of GPUs, several research areas are working with massive amounts
of data and dealing with heavy calculations. The exploration of this approach in benefit of QC
is a novel research field and by optimizing algorithms and the computing power of GPUs, new

breakthroughs can be achieved.

The contribution of this work is the first of three steps towards a solution for quantum simulation
not yet consolidated: the use of HPC’s (High Performance Computing) resources, such as GPUs
and clusters, coupled with optimizations that are capable of exploring patterns and mathematical

properties intrinsic to quantum computing. Steps two and three of our project are respectively
comprised by: (i) support for GPU/cluster simulation; and (ii) optimizations for efficient repre-
sentation/storage of the state vector.
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RESUMO. A simulação de algoritmos quânticos em computadores clássicos exige alta ca-

pacidade de processamento e armazenamento. Entretanto, otimizações voltadas à redução

das complexidades espacial e temporal são promissoras e capazes de melhorar o desempenho

dos simuladores. A principal contribuição deste trabalho consiste no desenvolvimento de

otimizações para descrição de transformações quânticas utilizando Processos Quânticos e

Processos Quânticos Parciais, seguindo as concepções do modelo teórico qGM. Esses pro-

cessos, quando computados no ambiente de execução VPE-qGM, reduzem o tempo de exe-

cução das simulações. A avaliação de performance desta proposta foi efetuada utilizando

benchmarks que incluem a simulação sequencial de algoritmos quânticos com até 24 qubits e

instâncias do Algoritmo de Grover. Os resultados mostram uma melhora na simulação de

transformações básicas e controladas, dado que seus correspondentes tempo de execução
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foram significantemente reduzidos, mesmo quando utilizados sistemas com muitos qubits.

Ainda, uma solução baseada em GPUs voltada à transformações que ainda possuem alto

custo de simulação no VPE-qGM é discutida.

Palavras-chave: Simulação Quântica, VPE-qGM, Processos Quânticos.
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[16] A. Maron, A. Ávila, R. Reiser & M. Pilla. “Introduzindo uma nova abordagem para simulação

quântica com baixa complexidade espacial”, in Anais do DINCON 2011. SBMAC, (2011), 1–6.

[17] A. Prokopenya. “Wolfram demonstrations project – quantum circuit implementing grover’s search

algorithm”, 2009, http://demonstrations.wolfram.com/QuantumCircuitImplementingGroversSearch

Algorithm/ (may 2013).

Tend. Mat. Apl. Comput., 14, N. 3 (2013)


