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ABSTRACT. In this paper we propose a bivariate long-term model based on the Farlie-Gumbel-Morgens-
tern copula to model, where the marginals are assumed to be long-term promotion time structured. The
proposed model allows for the presence of censored data and covariates. For inferential purpose a Bayesian
approach via Markov Chain Monte Carlo is considered. Further, some discussions on the model selection
criteria are given. In order to examine outlying and influential observations, we present a Bayesian case
deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures
are illustrated on artificial and real data.

Keywords: Bayesian approach, case deletion influence diagnostics, copula modeling, long-term survival.

1 INTRODUCTION

In survival and reliability analysis we can observe two lifetimes for a same patient or equipment.
For instance, in the medical area we can have interest in studying the lifetimes of matched human
organs, as kidneys and eyes, and double recurrence of a certain disease. In industrial applications
this type of data can occur for systems whose duration times depend on the durability of two
components. For instance, the damage of dual generators in a power plant or the lifetime of
motors in a twin-engine airplane. The examples set up above are illustrations of bivariate survival
data. In literature, an extensive list of papers on modeling multivariate survival data can be found.
For instance, we can cite [1, 27, 24] amongst others.

Bivariate survival data in general are correlated and the study of that dependence has been focus
of many researches. The most popular approach is the frailty models in that one or more random
effects are included in the model in order to model the dependence between the observations
(see for instance, [6, 46, 25, 34, 47, 24]). In this case, the marginal times are conditionally
independent given the frailty variable. Details on early developments of the such models may
be seen in [6]. [40] considered a comparative study between the frailty models and the bivariate
models based on the Exponential and Weibull distributions for bivariate survival data according
to Bayesian criteria.
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Recently, the copula models (see for instance, [16, 45, 33, 11, 10, 15, 49, 29]) have become

a popular tools to model the dependence of multivariate data, especially in biological areas,
actuarial sciences and finances. [35, 22] show some relationships between frailty models and
copula models.

A copula is a function that connects the marginal distributions to restore the joint distribution.

Different copula functions represent different dependence structures between variables ([33]). By
comparing to the joint distribution approach, a copula model is a more convenient tool in studying
the dependence structure. Indeed it is more flexible in applications, since, when the scatter of the

data does not fit any known family of joint distributions, it may be difficult to specify the joint
distribution. Using copulas, however, we can first estimate the marginal distributions and then
estimate the copula. Another advantage of the copula modeling is its relatively mathematical

simplicity. Also, it is possible to build a variety of dependence structures based on parametric or
non-parametric models for the marginal distributions.

In survival analysis, models based on copulas are considered in [26, 34, 41, 23]. Particularly,
from a Bayesian perspective, [39] considered an application of the Archimedian copula family

for modeling the dependence of bivariate survival. In their analysis, the author considered a
Weibull distribution for the marginal distributions of the bivariate lifetime components.

A difficulty arises if a part of the population is not susceptible to the event of interest. For
instance, in bivariate clinical studies a population can respond favorably to a treatment, being

considered cured. Considering univariate lifetimes, models which assumes part of the population
is cured have been widely developed and are usually called long term survival models. Perhaps
the most popular type of cure rate model is the mixture model introduced by [3, 2]. In this model,

it is assumed that a certain proportion of the patients, say p, are cured, in the sense that they do
not present the event of interest during a long period of time and can be seen as to be immune to
the cause of failure under study. Later on, the literature on mixture long-term model is extensive

and and interested readers can refer to [31, 37, 38], amongst others.

Long-term promotion time model ([48, 7]) assume that the number of causes or risks of a par-
ticular event of interest follows a Poisson distribution with mean θ . If the number of these cases
follows a Bernoulli distribution with parameter p, we have the mixture model ([3, 2]), in other

words, there is a single cause of occurrence. In this paper, we consider a copula model based on
the Farlie-Gumbel-Morgenstern (FGM) distribution (see, [12]) assuming promotion time models
as marginal distributions.

The motivation for considering the FGM copula is modeling bivariate data with a weak depen-

dence between marginal times. Also, the FGM copula can measure both positive and negative
dependence, while the usual copulas, such as the Archimedian copula family, can only measure
positive one. Then, the main objective of the paper is to present the FGM long-term bivariate
survival copula model assuming promotion time models as marginal distributions, and to de-

velop diagnostic measures from a Bayesian perspective based on the Kullback-Leibler (K-L)
divergence to the proposed modeling as proposed by [36]. For each individual lifetime variable
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we consider a long-term Weibull promotion time models. For inferential purpose joint estima-

tion was performed and a sampling based approach via Markov Chain Monte Carlo (MCMC)
was considered. A simulation study and an application on real data illustrates our approach. We
compare the methodology propose with the Positive stable frailty (PSF) model ([25]).

The paper is organized as follows. Section 2 presents a survival bivariate model by considering

a FGM copula distribution. Section 3 presents the Bayesian inferential procedure as well as
some discussions on the model selection criteria are given. Section 4 a Bayesian case deletion
influence diagnostics based on the K-L divergence is presented. Section 5 presents the results of

a simulation study and re-analyses the dataset on the efficacy of photocoagulation treatment for
proliferative retinopathy on diabetic patients reported by The Diabetic Retinopathy Study ([44])
comparing the methodology propose with the Positive stable frailty (PSF) model ([25]). Final

comments in Section 6 conclude the paper.

2 THE BIVARIATE SURVIVAL MODEL BASED ON FGM COPULA

Long-term survivors models have been widely used for fitting data where some individuals may
never suffer the cause of failure under study. In this type of modeling, it is assumed that, due to

some unobserved prognostic factors, a certain fraction π of the population is immune to the cause
of failure under study or a long-term survivor. The survivor function for the entire population
can be written as

Spop (t) = exp{−θ[1 − S0(t)]}. (2.1)

The long-term survivors cannot be identified but we can infer their presence in a data set if many
of the largest times are censored. Common choices for S0 (t) are the Gompertz, Exponential and

Weibull distributions. For this model, the cure rate π = exp{−θ}. When S0 (t) has an Expo-
nential and Weibull distributions, we have the so called exponential promotion time and Weibull
promotion time models, respectively.

The model (2.1) can be rewritten as follows (see, [7]),

Spop (t) = exp{−θ} + (1 − exp{−θ})S∗(t) (2.2)

where

S∗(t) = exp{−θ[1 − S0(t)]} − exp{−θ}
1 − exp{−θ} ,

obtaining a mathematical relationship between the model mixture model ([3], [2]).

In order to define a copula we first suppose that Cφ is a distribution function with density function

cφ on [0, 1]2 for φ ∈ R. Then, let (T1, T2) denote the paired failure times, Spop j and f pop j

denoting, respectively, the marginal long-term survival functions and the marginal long-term
density function of Tj , j = 1, 2. Consider (T1, T2) comes from the Cφ copula for some φ then
the joint survival and density function of (T1, T2) are given

Spop(t1, t2) = Cφ(Spop1(t1), Spop2(t2)), t1, t2 > 0, (2.3)

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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and

f pop(t1, t2) = cφ(Spop1(t1), Spop2(t2)) f pop1(t1) f pop2(t2), t1, t2 > 0, (2.4)

respectively. Notice that the marginal distributions and the dependence structure can be visu-

alized separately and this dependence structure is represented by a copula. Following [12],
considering the Farlie-Gumbel-Morgenstern distribution, hereafter FGM copula, we have the
copula distribution function given as

Cφ(u, v) = uv[1 + φ(1 − u)(1 − v)], (2.5)

where 0 ≤ u, v ≤ 1 e −1 ≤ φ ≤ 1.

For the FGM copula, Cφ given in (2.5), the Kendall’s tau ([33]) is given by

τφ = 2φ

9
, (2.6)

for φ = 0, τφ is equals 0.

Other dependence measures between the variables T1 and T2 can be found in [33]. For instance,

if the random variables T1 and T2 have Weibull distribution with density function

f (t j ) = α jλ j t
α j−1
j exp

{
−λ j t

α j
j

}
, j = 1, 2, (2.7)

it can be proved that the Pearson’s correlation coefficient between T1 and T2, is given by

ρ =
φ

(
1 − 2

− 1
α1

)(
1 − 2

− 1
α2

)
√(

	( 2
α1

+1)

	( 1
α1

+1)2 − 1

)(
	( 2

α2
+1)

	( 1
α2

+1)2 − 1

), (2.8)

observe when φ = 0 the correlation coefficient, ρ is equals 0. When Tj has Exponential distri-
bution, with parameter α j = 1, j = 1, 2, the correlation coefficient is given by, ρ = φ/4.

Consider (T1, T2) comes from the FGM copula (2.5) then the joint long-term survival of (T1, T2)

are given by

Spop(t1, t2) = Spop1(t1)Spop2(t2)(1 + φ(1 − Spop1(t1))(1 − Spop2(t2))), (2.9)

where φ parameter measures the intensity of the dependence between the lifetimes. Observe

that when φ = 0, Spop(t1, t2) = Spop1(t1)Spop2(t2), leading to the conclusion that the random
variables T1 and T2 are independent.

At least in principle, other choices of Cφ in (2.3) can be made straightforwardly, leading to differ-
ent copula survival models with promotion time models as marginal distributions. For instance,

according to the dependence structure, other copula models can be equally considered such as the
Gaussian copula as well as the Frank, Clayton and positive stable frailty families (Archimedean
copulas) amongst others. The construction of the inferential procedure will be analogous to what

shall be presented below, differing in the choice of the a prior distribution for the parameter de-
pendence of the copula chosen. We however, in terns of comparison, consider in the numerical
sections the positive stable frailty family.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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3 INFERENCE

For inference, we adopt a full Bayesian approach and assume lifetimes in presence of random
censoring. The likelihood function, prior distributions for the parameters in the model, details of

the MCMC algorithm and the model comparison are described below.

Let (Ti1, Ti2) the ith bivariate lifetime and (Ci1 , Ci2) the random censored bivariate lifetimes,
for i = 1, . . . , n. Suppose that (Ti1, Ti2) and (Ci1, Ci2) are independent. For each individual
i observed quantities are represented by the random variables ti j = min(Ti j , Ci j ) and δi j =
I (ti j = Ti j ), which denotes a censorship indicator, j = 1, 2. Let Spop(t1|γ 1) and Spop(t2|γ 1)

be the survival functions of Ti1 and Ti2, respectively, where γ 1 and γ 2 are parameter vectors of
q1and q2 elements associated to each one of the marginal distributions.

Considering the bivariate survival function Spop(t1, t2|φ, γ 1, γ 2) given in (2.9), the contribution

of the ith individual for the log-likelihood of θ = (φ, γ 1, γ 2) is given by [30]

�i (θ ) = δi1δi2 log

(
∂2Spop(t1, t2|θ )

∂ti1∂ti2

)
+ δi1(1 − δi2) log

(−∂Spop(t1, t2|θ)

∂ti1

)
+ δi2(1 − δi1) log

(−∂Spop(t1, t2|θ)

∂ti2

)
+ (1 − δi1)(1 − δi2) log Spop(t1, t2|θ ).

(3.1)

3.1 Prior and posterior densities

The use of the Bayesian method besides being an alternative statistical approach, it allows the
incorporation of previous knowledge of the parameters through an informative prior distribution.
When there is not such previous knowledge one may consider a non-informative prior structure.

For instance, in order to carry out a Bayesian inference procedure for the bivariate survival model
of giving in (2.9), consider as in Section 2, that the parametric distribution family of the marginal
lifetimes T1and T2 are known and indexed by the parameter vectors, γ 1 and γ 2, respectively.
In order to guarantee proper posterior distributions, we adopt proper prior distributions accord-

ing to the variation of the parametric space, but ensuring non-informativeness according to the
fixed hyper-parameters, which lead to such situation. Thus, we consider a prior distribution of
θ = (φ, γ 1, γ 2) given by

π(θ) ∝ (1 − φ)r1 −1(1 + φ)r2 −1
2∏

j=1

π(γ j ). (3.2)

Equation (3.2) implies that (1 − φ)/2 follows a Beta(r1, r2) distribution, π(γ j ) is the prior
distribution of γ j and that γ 1, γ 2 and φ are mutually independent, also φ ∈ (−1, 1).

Combining (3.2) with the likelihood function, L(θ) = exp(
∑n

i=1 �i (θ)), where �i (θ) is given in

(3.1), we straightforwardly obtain the joint posterior distribution of θ), π(θ)|D), where D is the
observed dataset.

For cure rate model (2.1), the parameter vectors γ j , consists of the parameters of the distribution
chosen for S0(t) and the parameter θ j , j = 1, 2. Following [7] we incorporate covariates for the

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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parametric cure rate model (2.1) through the cure rate parameter θ as follows: For each subject i,

i = 1, . . . , n, and for each time j , j = 1, 2, we consider θ j i ≡ θ(x′
iβj) = exp(x′

iβj), where xi
′ =

(xi1, . . . , xiq) denote the q × 1 vector of covariates for the ith subject and βj = (β j1, . . . , β jq)′
denote the corresponding vector of regression coefficients. We choose the following independent

prior distributions: β0 j ∼ Normal(μoj , σ 2
0 j ), β1 j ∼ Normal(μ1 j , σ 2

1 j) j = 1, 2.

3.2 Computation

In the Bayesian approach, the target distribution for inference is the posterior of the parameters
of interest. For this, we need to obtain the marginal posterior densities of each parameter, which

are obtained by integrating the joint posterior density with respect to each parameter.

We point out that for any marginal distribution of T1and T2 the joint posterior distribution is not
tractable analytically but Markov chain Monte Carlo (MCMC) methods such as the Gibbs sam-
pler, can be used to draw samples, from which features of the marginal posterior distributions of

interest can be inferred [21]. For the estimation procedure we consider joint estimation where
all the model parameters are estimated simultaneously in the MCMC algorithm. The Gibbs
sampler is an iterative procedure of a broad class of methods generically named Markov Chain

Monte Carlo (MCMC). Many practical aspects of the MCMC methodology are described in
[18, 17]. This method is applicable in situations where one is not able to generate samples
directly from the joint posterior density. It however requires the full conditional densities for

generating samples.

For each time Tj we assume that S0(t j ) given in (2.1) has the Weibull distribution given in (2.7)
with parameters α j and λ j , j = 1, 2. We choose the following independent prior distributions,
α j ∼ Gamma(a j , b j), λ j ∼ Gamma(c j , d j ) j = 1, 2.

Combining the likelihood function (3.1) and the prior distribution (3.2), we can obtain the joint

posterior density of all unobservables which is not tractable analytically but MCMC methods
such as the Gibbs samples, can be used to draw samples, from which features of marginal poste-
rior distributions of interest can be inferred. ConsideringD = (t1, t2, d1, d2, x), where for each

individual i, i = 1, 2, ti and di, are the observed vectors of lifetimes and censoring ti j and δi j for
j = 1, 2, respectively.

The full conditional posterior densities for each parameter are given by

π(φ|D, θ(−φ)) ∝ (1 − φ)r1−1(1 + φ)r2−1

(
n∏

i=1

�i

)
,

π(β0 j |D, θ(−β0 j)) ∝
(

n∏
i=1

�i Spopj(t j i )

)
exp

({ n∑
i=1

δ j i + μ0 j

nσ 2
0 j

}
β0 j − β2

0 j

2σ 2
0 j

)
,

π(β1 j |D, θ(−β1 j)) ∝
(

n∏
i=1

�i Spopj(t j i )

)
exp

({ n∑
i=1

δ j i xi + μ1 j

nσ 2
1 j

}
β1 j − β2

1 j

2σ 2
1 j

)
,

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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π(λ j |D, θ(−λ j )) ∝
(

n∏
i=1

�i S j (t j i )

)
λ

n+c j −1
j exp

([ n∑
i=1

θ j i S j(t j i )

]
− d jλ j

)
and

π(α j |D, θ(−α j )) ∝
(

n∏
i=1

�i t
α j−1
j i S j(t j i )

)
α

n+a j−1
j exp

([ n∑
i=1

θ j i S j (t j i)

]
− b jα j

)
,

where
θ j i = exp

(
β0 j + β1 j xi

)
, S j(t j i ) = exp

(
−λ j t

α j
j i

)
and

Spopj(t j i ) = x exp
(−θ j i (1 − S j(t j i ))

)
, for j = 1, 2,

with

�i = ν(1−δ1i )(1−δ2i)
1i

ν
δ1iδ2i
2i νδ1i (1−δ2i)

3i
νδ2i (1−δ1i)

4i
,

ν1i = 1 + φ

2∏
j=1

(1 − Spopj(t j i)),

ν2i = 1 + φ

⎛⎝1 +
2∏

j=1

(1 − 2Spopj(t j i ))

⎞⎠ ,

ν3i = 1 + φ

⎛⎝1 − 2Spop1(t j i ) − Spop2(t j i ) + 2
2∏

j=1

Spopj(t j i )

⎞⎠
and

ν4i = 1 + φ

⎛⎝1 − Spop1(t j i ) − 2Spop2(t j i ) + 2
2∏

j=1

Spopj(t j i )

⎞⎠ , for j = 1, 2.

The conditional densities above do not belong to any known parametric density family. In order

to generate our samples we then implement an Metropolis-Hasting algorithm within Gibbs itera-
tions ([9]). The simulations were performed using the OpenBUGS software ([43]). OpenBUGS
codes are available by mailing to one of the authors.

3.3 Model comparison criteria

In the literature, there are various methodologies which intend to analyze the suitability of a
distribution, as well as selecting the best fit among a collection of distributions. In this paper we
shall inspect some of the Bayesian model selection criteria; namely, the deviance information

criterion (DIC) proposed by [42], the expected Akaike information criterion (E AIC) by [4],
and the expected Bayesian (or Schwarz) information criterion (E B IC) by [5] was used. These

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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criteria are based on the posterior mean of the deviance, E{D(θ)}, which is also a measure of fit

and can be approximated from the MCMC output by

Dbar = 1

V

V∑
v=1

D(θv)

where the index v indicates the v-th realization of a total of V realizations and

D(θ) = −2
n∑

i=1

log(g((t1i , t2i |θ)),

where g(.) is pdf corresponding to our model. For observed data we have that g(t1i , t2i) =
f1(t1i ) f2(t2i )�i , for i = 1, . . . , n, with �i = 1 + α(1 − 2Spop1(t1i) − 2Spop2(t2i)

+ 4Spop1(t1i )Spop2(t2i)), f popj (.) and Spopj(.), j = 1, 2, are Weibull promotion density func-

tion and Weibull promotion survival function, respectively. The EAIC, EBIC and DIC crite-
ria can be calculated using the MCMC output by means of ̂E AIC = Dbar + 2q , ̂E B IC =
Dbar + q log(n) and ̂DIC = Dbar + ρ̂D = 2Dbar − Dhat , respectively, where q is the

number of parameters in the model and ρD is the effective number of parameters, defined as
E{D(θ)} − D{E(θ)}, where D{E(θ)} is the deviance evaluated at the expected values of the
posterior distributions, which can be estimated as

Dhat = D

(
1

V

V∑
v=1

φ(v),
1

V

V∑
v=1

α1
(v),

1

V

V∑
v=1

α2
(v),

1

V

V∑
v=1

λ1
(v),

1

V

V∑
v=1

λ2
(v),

1

V

V∑
v=1

β1
(v),

1

V

V∑
v=1

β2
(v)

)
.

Comparing alternative models, the preferred model is the one with the smallest criteria values.

Another criteria which is one of the most used in applied works is derived from the conditional

predictive ordinate (C P O) statistics. For a detailed discussion on the C P O statistics and its
applications to model selection, see [19]. Let D the full data and D(−i) denote the data with the
ith observation deleted. We denote the posterior density of θ given D(−i) by π(θ |D(−i)), for

i = 1, . . . , n. For the ith observation, the C P Oi can be written as

C P Oi =
∫

�

g((t1i , t2i)|θ)π(θ |D(−i) ) =
{∫

�

π(θ |D(−i))

g((t1i , t2i)|θ)
dθ

}−1

, i = 1, . . . , n.

For the proposed model a closed form of the C P Oi is not available. However, a Monte Carlos
estimate of C P Oi can be obtained by using a single MCMC sample from the posterior distribu-

tion π(θ |D). Let θ1, θ2, . . . , θQ be a sample of size Q of π(θ |D) after the burn-in. A Monte
Carlo approximation of C P Oi ([8]) is given by

̂C P O i =
⎧⎨⎩1

q

Q∑
q=1

1

g((t1i , t2i)|θq)

⎫⎬⎭
−1

.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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A summary statistics of the C P Oi ’s is B = ∑n
i=1 log(̂C P O ). The larger is the value of B, the

better is the fit of the model.

4 BAYESIAN CASE INFLUENCE DIAGNOSTICS

The best known pertubation schemes are based on case deletion ([13]), in which the effects are
studied of completely removing cases from the analysis. This reasoning will form the basis for
our Bayesian global influence methodology and in doing so it will be possible to determine which
subjects might be influential for the analysis. In order to investigate if some of the observations

are influential for the analysis, we considered a Bayesian case influence diagnostic procedure
based on the Kullback-Leibler (K-L) divergence between P and P(−i), denoted by K (P, P(−i)),
where P denotes the posterior distribution of θ for the full data, and P(−i) denotes the posterior

distribution of θ dropping the i-th observation. Specifically,

K (P, P(−i)) =
∫

π(θ |D) log

[
π(θ |D)

π(θ |D(−i))

]
dθ. (4.1)

The K (P, P(−i)) measures the effect of deleting of i-th observation from the full data on the
joint posterior distribution of θ . As pointed by [36], calibration of K (P, P(−i)) can be done by

solving for pi the equation K (P, P(−i)) = K [B(0.5), B(pi )] = − log[4 pi(1 − pi)]/2 where
B(p) denotes the Bernoulli distribution with success probability p. This implies that describing
outcomes using π(θ |D) instead of π(θ |D(−i)) is compatible with describing an unobserved event

as having probability pi when correct probability is 0.5. After some algebraic manipulation it can
be shown that pi = 1

2 {1+√1 − exp[−2K (P, P(−i))]}. This equation implies that 0.5 ≤ pi ≤ 1.

That is, if pi 	 0.5 then the ith case is considered influential.

For our case it can be shown that (4.1) can be expressed as a posterior expectation

K (P, P(−i)) = log Eθ |D
{[g((t1i , t2i)|θ)]−1}+ Eθ |D

{
log[g((t1i , t2i)|θ)]}

= − log(C P Oi ) + Eθ |D
{

log[g((t1i , t2i)|θ)]}, (4.2)

where Eθ |D(.) denotes the expectation with respect to the joint posterior π(θ |D). Thus (4.2)
can be estimated by sampling from the posterior distribution of θ via MCMC methods. Let

θ1, θ2, . . . , θQ be a sample of size Q of π(θ |D). Then, a Monte Carlo estimate of K (P, P(−i))

is given by

̂K (P, P(−i)) = − log(̂C P Oi ) + 1

Q

Q∑
q=1

log[g((t1i , t2i)|θq )]. (4.3)

5 APPLICATIONS

In this section, results from simulation studies and a real data example are presented in order to
illustrate the performance of the proposed methodology.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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5.1 Artificial Data

In the study we considered the survival model given in (2.9), assuming that S0(t j ) has the Weibull
distribution given in (2.7) with parameters α j and λ j , j = 1, 2. The covariates xi were generated

from a Bernoulli distribution with parameter 0.5 and the artificial bivariate data (Ti1, Ti2), i =
1, . . . , n, were generated assuming n = 160 according to the following steps: First we generated
Ti1 = (−log(1 − ui1)/λi1)

1/α1 where ui1 ∼ U (0, 1). Next Ti2 was generated using a random

variable ui2 ∼ U (0, 1) and the solution of the nonlinear equation, wi +φ(2u1i − 1)(w2
i −wi )−

ui2 = 0, considering Ti2 = (−log(1 − wi)/λi2)
1/α2 . For each covariate value k, k = 0, 1, we

fixed the cure rate πkj = exp θkj value, j = 1, 2. For tkj simulating a cutoff point t∗
kj which

was chosen so that the higher times represent πkj % of the lifetimes, and were assumed censored.
The following cure rate values was fixed: π01 = 0.4, π11 = 0.3, π02 = 0.3 and π12 = 0.2.
We considered the following values for the other parameters of the model α1 = 2, λ1 = 0.5,

α2 = 1.5, λ2 = 0.2 and φ = 0.6.

For sake of illustration we also compare our FGM bivariate copula model with the well known
positive stable frailty (PSF) model ([25]). The joint survival function of the PSF model is
given by

Spop(t1, t2) = ((− ln(Spop1(t1)))
1
φ + (− ln(Spop2(t2)))

1
φ )φ. (5.1)

When φ → 1, we obtain Spop(t1, t2) = Spop(t1)Spop(t2). The Kendall’s tau7 is given by
τφ = 1 − φ.

For more details on frailty models where the random effects have a positive stable distribution
interested readers can refer to [28, 32].

The following independent priors were considered to perform the Gibbs sampler:

βi j ∼ N(0, 103), λ j ∼ Gamma(1, 0.001) and α j ∼ Gamma(1, 0.001),

where i = 0, 1 and j = 1, 2. For parameter of PSF model we assume φ ∼ Beta(1, 1) and for

FGM copula that 1 − 2π(φ) ∼ Beta(1, 1), such choices guarantee that φ ∈ (−1, 1) and ensure
non-informativeness.

The simulations were performed using the OpenBUGS software ([43]). For each generated data
set we simulate two chain of size 50,000 for each parameter, disregarding the first 10,000 it-

erations to eliminate the effect of the initial values and to avoid autocorrelation problems, we
consider a spacing of size 20, obtaining a effective sample of size 4,000 upon which the pos-
terior inference is based on. For each sample the posterior mean of the parameter and the

EAIC, EBIC, DIC and B are recorded. The MCMC convergence was monitored according to the
methods recommended by [14] (CODA package). The number of iterations is considered suf-
ficient for the approximate convergence since in all cases the Gelman-Rubin diagnostic is very

close to 1.

Table 1 presents the summary for the FGM bivariate long-term survival model parameters.
Table 2 presents the Bayesian criteria for the FGM and PSF models. The FGM model outper-
forms the PSF one in all considered criteria.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Table 1: Simulated data. Posterior mean, standard deviation (SD) and HPD
(95%) interval for the FGM bivariate long-term survival model parameters.

Parameter Mean SD HPD (95%)

Time 1

α1 2.362 0.210 (1.972; 2.793)

λ1 0.365 0.162 (0.060; 0.696)

β01 0.01 0.149 (–0.281; 0.292)

β11 0.135 0.191 (–0.233; 0.499)

Time 2

α2 1.678 0.149 (1.382; 1.974)

λ2 0.163 0.029 (0.112; 0.226)

β02 0.369 0.162 (0.054; 0.703)

β12 0.103 0.178 (–0.236; 0.457)

Copula φ 0.587 0.212 (0.151; 0.942)

Table 2: Simulated data. Bayesian criteria.

Model Criterion

EAIC EBIC DIC B

FGM 839.750 867.426 830.3 –415.100
PSF 843.506 871.183 834.3 –417.128

5.2 Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the
presence of outliers in the data. In order to do so, we generated a sample of length 160 with fixed
parameters α1 = 2, λ1 = 0.5, α2 = 1.5, λ2 = 0.2 and φ = 0.6. The percentage of censure was

controlled as follows: for each covariate value k, k = 0, 1, we fixed the cure rate πkj = exp{θkj }
value, j = 1, 2. For tkj simulating a cutoff point t∗

kj which was chosen so that the higher times
represent πkj % of the lifetimes, and were assumed censored.

We selected cases 90, 107 and 120 for perturbation. The perturbation scheme were structured

as following. To create influential observation artificially in the dataset, we choose one, two or
three of these selected cases. For each case we perturbed one or both lifetimes as follows t̃i =
ti + 7St , i = 1, 2, where St is the standard deviations of the ti ’s. For case 107 we perturbed only

the lifetime t1 and for case 90, the lifetime t2, and for case 120, both lifetimes were perturbed.

The MCMC computations were made in a similar fashion to those in the last section and further
to monitor the convergence of the Gibbs samples we also used the methods recommended by
[14]. Table 3 shows that the posterior inferences are sensitive to the perturbation of the selected

case(s). In Table 3, Dataset a denotes the original simulated data set with no perturbation, and
Datasets b to g denote datasets with perturbed cases.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Table 3: Simulated data. Posterior means and standard deviations (SD) for the FGM bivariate
survival model parameters according to different perturbation schemes.

β01 β11 α1 λ1 β02 β12 α2 λ2 φ

Dataset Perturbed case Mean Mean Mean Mean Mean Mean Mean Mean Mean

[SD] [SD] [SD] [SD] [SD] [SD] [SD] [SD] [SD]

a Original Sample 0.010 0.135 2.362 0.365 0.369 0.103 1.678 0.163 0.587

0.149 0.191 0.210 0.162 0.162 0.178 0.149 0.029 0.212

b 107 0.362 0.137 1.641 0.426 0.366 0.098 1.672 0.163 0.579

0.231 0.197 0.136 0.108 0.162 0.186 0.152 0.030 0.218

c 90 0.0112 0.124 2.385 0.810 0.703 0.082 1.342 0.129 0.611

0.1500 0.195 0.207 0.113 0.245 0.173 0.112 0.032 0.212

d 120 0.3737 0.143 1.627 0.419 0.698 0.081 1.341 0.130 0.630

0.2520 0.195 0.129 0.110 0.247 0.179 0.109 0.033 0.207

e {90, 107} 0.3595 0.137 1.641 0.427 0.681 0.086 1.343 0.133 0.599

0.2300 0.198 0.132 0.108 0.239 0.183 0.109 0.032 0.221

f {107, 120} 0.6657 0.097 1.486 0.294 0.705 0.077 1.333 0.130 0.621

0.3340 0.197 0.123 0.095 0.266 0.186 0.111 0.033 0.213

g {90, 107, 120} 0.652 0.099 1.487 0.295 0.886 0.048 1.245 0.112 0.619

0.305 0.198 0.119 0.093 0.279 0.184 0.099 0.032 0.217

h 42 0.0023 0.138 2.398 0.809 0.666 0.132 1.355 0.130 0.626

0.1490 0.194 0.212 0.112 0.243 0.181 0.109 0.033 0.209

i {42, 120} 0.3491 0.145 1.639 0.429 0.858 0.108 1.250 0.110 0.659

0.2150 0.200 0.129 0.103 0.296 0.187 0.102 0.031 0.204

Table 4 displays the fit of different cases of the perturbed data set. We can observe that the
original simulated data (Dataset a) had the best fit.

Table 4: Simulated data. Bayesian criteria for each perturbed ver-
sion fitting bivariate model based on the FGM bivariate survival
model parameters according to different perturbation schemes.

Data names
Bayesian criteria

EAIC EBIC DIC B

a 839.750 867.426 830.300 –415.100
b 870.308 897.985 861.100 –434.932
c 857.951 885.628 848.400 –426.561

d 888.006 915.682 878.500 –445.262
e 888.387 916.063 878.900 –446.388
f 898.624 926.301 889.100 –449.301

g 908.782 936.458 899.200 –451.618
h 856.841 884.518 847.400 –425.651
i 897.509 925.185 888.100 –448.408
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Now we consider the sample from the posterior distributions of the parameters of the model

based on the FGM bivariate survival model to compute the K-L divergence and calibration of this
divergence, as describe in Section 4. The results in Table 5 show, before perturbation (Dataset
a), that all the selected cases are not influential with small K (P, P(−i)) and related calibration

close to 0.596. However, after perturbations (Dataset b to i), the K (P, P(−i)) increases and the
corresponding calibrations become larger than 0.5, indicating those cases are influential.

Table 5: Case influence diagnostics for the simulated data.

Data names Case number K (P, P(−i)) Calibration

a 42 0.019 0.596

90 0.010 0.570

107 0.010 0.570

120 0.010 0.570

b 107 4.896 1.000

c 90 2.660 0.999

d 120 6.715 1.000

e 90 2.047 0.996

107 5.602 1.000

f 107 0.789 0.945

120 4.680 1.000

g 90 0.544 0.907

107 0.737 0.939

120 1.572 0.989

h 42 2.184 0.997

i 42 0.602 0.918

120 4.593 1.000

In the Figure 1 shows the K (P, P(−i)) for the FGM bivariate survival model. Clearly we can see
that K (P, P(−i)) performed well to identifying influential case(s), providing larger K (P, P(−i))

when compared to the other cases.

We point out that, the way in which our copula survival model was constructed, we expect that

K (P, P(−i)) detects the perturbed observations if the data is generated from a model assuming
a particular copula and is adjusted assuming the other copulas. This is due to the fact that the
marginals are the same, independent of the assumed copula function, differing only in the struc-

ture of dependence between them. Nevertheless, we considered the data sets generated according
to the of FGM copula according to Subsection 5.1, with their perturbed observations and fitted
the model assuming the FGM copula, as well as the Archimedean copulas PS, Frank and Clayton.

In all situations K (P, P(−i)) detects the influential points in the same manner.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Figure 1: (to be continue next page).
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Figure 1: Simulation data. Index plot of K (P, P(−i)) from fitting a bivariate survival model
based on FGM copula.

5.3 Real data

In this section we consider a Bayesian analysis of the dataset presented in [44] that consist of
follow up times for 197 diabetic patients under 60 years of age. The main purpose of the study is
to assess the efficacy of photocoagulation treatment for proliferative retinopathy. The treatment

was randomly assigned to one eye of each patient and the other, was considered as a control.
The first component is a vector of lifetimes which represents the time up to visual loss for the
treatment eye (T1), while the second component (T2) is the time up to visual loss for the control
eye. The subjects could be censored, which happened for 73% of the treated eyes and 49% of

the untreated eyes. As [39] we consider as covariate the dichotomized patient age (less than 20
years and older than 20 years). For sake of illustration the perturbation scheme were structured

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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as following. To create an influential observation artificially in the dataset we selected the case

100 and perturbed both lifetimes as follows: t̃i = ti + 7St, i = 1, 2, where St is the standard
deviations of the ti ’s.

The data set was then reanalyzed though our approach by adopting the model in (2.1) with pro-
motion time Weibull as marginal. The Bayes estimates were based on posterior samples recorded

every 20th iteration from 50, 000 Gibbs samples after a burn-in of 10, 000 samples. Similarly
to what was considered when the simulation study, we choose the following independent proper
prior distributions: βi j ∼ N(0, 103), λ j ∼ Gamma(1, 0.001) and α j ∼ Gamma (1, 0.001),

where i = 0, 1 and j = 1, 2. For parameter of PSF model we assume φ ∼ Beta(1, 1) and for
FGM copula that 1 − 2π(φ) ∼ Beta(1, 1), such choices guarantee that φ ∈ (−1, 1) and ensure
non-informativeness. To monitor the convergence of the Gibbs samples we uses the methods

recommended by [14].

In Table 6 we report posterior summaries for the parameters under the FGM long-term bivariate
survival copula model considering Weibull and Exponential promotion marginals for S0(t) given
in (2.1), considering the original sample as well as the perturbed one. Following [20], we have

checked the sensitivity of the routine use for gamma prior on the variance components and found
that results are fairly robust under different prior. We also checked the sensitivity analysis for
the variance components parameters for various choices of prior parameters by changing only on

parameter at a time and keeping all other parameters constant to their default values. The poste-
rior summaries of the parameters do not present remarkable difference and not impair the results
in Table 6. Considering both the original and perturbed samples, we observed a small change
in the posterior estimates of all parameters, showing the importance of verifying the posterior

inference sensitivity to perturbations. Also, for both samples, the HPD credibility intervals for
the location parameter of the marginal Weibull distributions contains the 1, leading to evidence
in favor of a Exponential distribution to the marginal ones. Then, considering the FGM long-

term bivariate survival copula model with exponential promotion marginals for S0(t) given in
(2.1), the Kendall’s tau (2.6) are equals to 0.184 and 0.173, respectively, for the original sample
and the perturbed one, leading to the the existence of a weak dependence between the marginal

quantities.

Considering the FGM long-term bivariate survival copula model with Exponential promotion
marginals for S0(t) given in (2.1), we compute the K-L divergences and related calibrations for
the original sample, but do not find highly influential cases. The K (P, P(−i)) are smaller that

0.096 and the corresponding calibrations are smaller than 1. For the perturbed sample however,
for the case 100, the K (P, P(−i)) is equals to 1.019 and the corresponding calibration is equal to
0.966 (detecting the influence point). For the remaining cases, K (P, P(−i)) are smaller that 0.069

with corresponding calibrations smaller than 1. Figure 2 shows the index plot of K (P, P(−i))

from fitting the bivariate survival model based on FGM copula considering both samples (original
and perturbed).

Table 7 presents the model comparison criteria discussed in Section 3 for comparing the FGM

long-term bivariate survival copula model with Weibull promotion marginal distributions with

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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Table 6: Diabetic retinopathy study data. Summary results from the posterior distribution, mean
and standard deviation (SD) for parameter under model based on FGM copula.

Weibull Exponential
Parameter

Mean HPD (95%) Mean HPD (95%)

α1 1.057 (0.800; 1.330) — —

λ1 0.024 (0.010; 0.048) 0.026 (0.020; 0.044)

β01 –0.570 (–0.961; 0.187) –0.523 ( –1.020; 0.212)

Original β11 –0.469 (–0.999; –0.130) –0.433 ( –1.044; 0.114)

Sample α2 0.977 (0.804; 1.150) — —

λ2 0.019 (0.008; 0.033) 0.017 (0.006; 0.030)

β02 0.155 (–0.332; 1.035) 0.199 (–0.335; 1.023)

β12 0.363 (0.003; 0.669) 0.350 (0.031; 0.735)

φ 0.830 (0.499; 0.994) 0.813 (0.4085; 0.993)

α1 0.843 (0.638; 1.073) — —

λ1 0.015 (0.002; 0.053) 0.015 (0.003; 0.031)

β01 0.427 (–0.784; 1.774) –0.103 (–0.791; 1.034)

Perturbed β11 0.239 (–0.212; 0.842) –0.522 (–1.065; –0.011)

Sample α2 0.943 (0.772; 1.143) — —

λ2 0.019 (0.009; 0.034) 0.014 (0.005; 0.025)

β02 –0.228 (–0.948; 0.174) 0.303 (–0.236; 1.072)

β12 0.308 (–0.206; 0.696) 0.348 (0.005; 0.740)

φ 0.780 (0.385; 0.992) 0.809 (0.465; 0.993)

Figure 2: Diabetic Retinopathy study data. Index plot of K (P, P(−i)) from fitting the bivariate
survival model based on FGM copula.
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its particular independence cases. There is positive evidence in favor The FGM model at the

expense of the model which considers independence. Also, there is evidence in favor of the FGM
long-term bivariate survival copula model with Exponential promotion marginal distributions.

Besides, we fitted the PSF model for the diabetic retinopathy study data considering both Weibull
and Exponential marginal promotion distributions. Based on all Bayesian criteria, there is posi-

tive evidence in favor the FGM model at the expense of the PSF model, indicating that the FGM
long-term bivariate survival copula model can be seen as a competitor to the PSF model, which is
a well known model commonly used in literature for fitting bivariate lifetime data. As expected,

all the criteria presented evidence in favor the original sample (without the influential point).

Table 7: Diabetic retinopathy study data. Bayesian criteria.

Model EAIC EBIC DIC B

FGM Weibull 1668.667 1698.216 1657 –828.157

FGM Exponential 1665.295 1688.278 1657 –828.812

Original PSF Weibull 1672.354 1701.903 1662 –831.180

Data PSF Exponential 1671.071 1700.619 1659 –830.188

Independence Weibull 1682.922 1709.187 1673 –837.187

Independence Exponential 1677.419 1697.120 1671 –835.820

FGM Weibull 1685.183 1714.732 1670 –838.286

FGM Exponential 1677.427 1700.409 1668 –835.423

Perturbed PSF Weibull 1682.526 1712.074 1668 –836.560

Data PSF Exponential 1679.256 1702.239 1671 –836.787

Independence Weibull 1694.613 1720.879 1684 –843.252

Independence Exponential 1689.951 1709.650 1682 –842.850

6 SOME FINAL REMARKS

In this paper, we presented the FGM long-term bivariate survival copula model. Parameter esti-

mation is based on a Bayesian approach via MCMC. We have used Bayesian case influence diag-
nostic based on the Kullback-Leibler divergence in order to study the sensitivity of the Bayesian
estimates under perturbations in the model/data. Finally, we demonstrate our approach with an
artificial and a real dataset.

In the two-step approach, the marginal parameters are estimated firstly and then, the copula
parameter is estimated in a second step. This approach provides consistent, but not efficient esti-
mators using a frequentist approach. However, from the Bayesian perspective, one can estimate
all the model parameters simultaneously via the MCMC algorithm such that the assumption of

independence in the first step is avoided. We however also considered a two-step estimation

Tend. Mat. Apl. Comput., 14, N. 3 (2013)
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method for all study. We omitted the results obtained since they are similar to those obtained by

considering the joint estimation approach which we prefer.

Here we assume lifetimes in presence of random censoring. However, at least in principle, the
proposed methodology can be develop straightforwardly for the type I and type II censoring
particular cases. Interval and left censoring are also important and could be considered further.
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RESUMO. Neste artigo nós propomos um modelo bivariado de longa duração baseado na

copula de Farlie-Gumbel-Morgenstern, onde assumimos marginais com estrutura de tempo

de promoção. O modelo proposto permite a presença de dados censurados e de covariáveis.

Para fins inferenciais foi considerada uma abordagem bayesiana usando métodos Monte

Carlo em Cadeias de Markov. Além disso, algumas discussões sobre os critérios de seleção de

modelos são apresentadas. A fim de detectar outliers e observações influentes, nós apresenta-

mos um método bayesiano de análise de influência de deleção de caso baseado na divergência

de Kullback-Leibler. Os procedimentos desenvolvidos são ilustrados em dados artificiais e

reais.

Palavras-chave: Abordagem Bayesiana, Diagnóstico de influência de deleção de caso,

modelagem copula, sobrevivência de longa duração.
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& T. Rychlik, Springer (2010).

[30] J.F. Lawless. Statistical Models and Methods for Lifetime Data. New York: Wiley & Sons (2003).

[31] R.A. Maller & X. Zhou. Survival Analysis with Long-Term Survivors. Wiley, New York (1996).

[32] A.K. Manatunga & D. Oakes. Parametric Analysis of Matched Pair Survival Data. Lifetime Data

Analysis, 5 (1999), 371–387.

[33] R. Nelsen. An Introduction to Copulas, 2nd ed., Springer, New York (2006).

[34] D. Oakes. Bivariate survival models induced by frailties. Journal of the American Statistical Associ-

ation, 84 (1989), 487–493.

[35] D. Oakes. On Frailty Models and Copulas Recent Advances in Statistical Methods. Proceedings of
Statistics 2001 Canada: The 4th Conference in Applied Statistics, Montreal, (2001), 218–224.

[36] F. Peng & D. Dey. Bayesian analysis of outlier problems using divergence measures. The Canadian
Journal of Statistics. La Revue Canadienne de Statistique, 23(2) (1995), 199–213.

[37] Y. Peng, K.B.G. Dear & J.W. Denham. A generalized F mixture model for cure rate estimation.
Statistics in Medicine, 17 (1998), 813–830.

[38] J. Rodrigues, M. de Castro, V.G. Cancho & F. Louzada Neto. On the unification of long-survival
models. Statistics and Probabilities Letters, 79(1) (2009), 753–759.

[39] J.S. Romeo, N.I. Tanaka & A.C. Pedroso de Lima. Bivariate survival modeling: a Bayesian approach
based on Copulas. Lifetime Data Analysis, 12 (2006), 205–222.

[40] S.K. Sahu & D.K. Dey. A comparison of frailty and other models for bivariate survival data. Lifetime

Data Analysis, 6 (2000), 207–228.

[41] J.H. Shih & T.A. Louis. Inferences on the association parameter in copula models for bivariate
survival data. Biometrics, 51 (1995), 1384–1399.

[42] D.J. Spiegelhalter, N.G. Best, B.P. Carlin & A. van der Linde. Bayesian measures of model complex-
ity and fit. Journal of the Royal Statistical Society B, 64 (2002), 583–639.

[43] D. Spiegelhalter, A. Thomas, N. Best & D. Lunn. OpenBUGS User Manual, version 3.0.2, MRC

Biostatistics Unit, Cambridge; software available at http://mathstat.helsinki.fi/openbugs.

[44] The Diabetic Retinopathy Study Research Group. Preliminary report on the efeect of photo-

coagulation therapy. American Journal of Ophthalmology, 81 (1976), 383–396.

[45] P.K. Trivedi & D.M. Zimmer. Copula modelling: an introduction for practitioners. Foundations and

Trends in Econometrics, 1 (2005), 1–111.

[46] J.W. Vaupel, K.G. Manton & E. Stallard. The impact of heterogeneity in individual frailty on the

dynamics of mortality. Demography, 16 (1979), 439–454.

[47] A. Wienke. Frailty Models in Survival Analysis. Chapman & Hall/CRC, Boca Raton (2011).

[48] A.Y. Yakovlev & A.D. Tsodikov. Stochastic Models of Tumor Latency and Their Biostatistical
Applications. World Scientific, Singapore (1996).

[49] S. Zhang, Y. Zhang, K. Chaloner & J.T. Stapleton. A copula model for bivariate hybrid censored

survival data with application to the MACS study. Lifetime Data Analysis, 16 (2010), 231–249.

Tend. Mat. Apl. Comput., 14, N. 3 (2013)


