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1. Introdu
tion

Green's fun
tions for wave problems, both time-dependent and stationary ones,

governed by the wave and Helmholtz equations, respe
tively, in unbounded domains

having one, two or three dimensions have well known expressions (
f. referen
e [1℄,

se
tions 11.2 and 13.2.2). The Fourier transform serves well in their determination,

but the evaluation of the inversion integral in two dimensions � the 
ase 
onsidered

in this work � is the most 
hallenging.

For the Helmholtz equation, referen
e [9℄, on pp. 822-824, states that the in-

version 
an be performed by using 
ontour integration together with a 
hange of


omplex variables of the type given in equation (2.10) below, but does not reveal

the steps of the 
al
ulation. Later on, referen
e [4℄, on pp. 173-176, shows a little

more thereof, but still as an outline whi
h is hard to follow.

It is thus our purpose to o�er here a detailed des
ription of this methodology,

but, to make an innovation, we apply it to the wave equation. Both retarded

(Se
tion 2) and advan
ed (Se
tion 3) Green's fun
tions are 
al
ulated. Green's

fun
tions for the Helmholtz equation are also obtained as a by-produ
t (Se
tion 4).

We 
on
lude the exposition with �nal 
omments (Se
tion 5).
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2. Retarded Green's Fun
tion for the Wave Equa-

tion

Green's fun
tion G(~r, t |~r ′, t′) for the wave equation in a boundless two-dimensional

domain is the solution of

∇2G(~r, t |~r ′, t′)− 1

c2
∂2G

∂t2
= δ(~r − ~r ′) δ(t− t′) , (2.1)

with ~r and ~r ′
in R

2
, and t and t′ in R. In this se
tion, we 
onsider the retarded or


ausal Green's fun
tion, for whi
h

G(~r, t |~r ′, t′) = 0 if t < t′ . (2.2)

To solve the problem de�ned by (2.1) and (2.2), we �rst take the Fourier trans-

form of (2.1) with respe
t to t, obtaining

∇2G̃(~r, ω |~r ′, t′) + (ω/c)2G̃ = δ(~r − ~r ′) eiωt′/
√
2π , (2.3)

where

G̃(~r, ω |~r ′, t′) ≡ Ft{G(~r, t |~r ′, t′)} =
1√
2π

∫ ∞

−∞

dt eiωtG(~r, t |~r ′, t′) .

To 
ompute the inverse transformG = F
−1
t {G̃} = (2π)−1/2

∫∞

−∞ dω e−iωtG̃, we mod-

ify this formula a little, by splitting the integral in the intervals (−∞, 0) and (0,∞)
and performing the 
hanging of variable ω → −ω in the �rst integral, obtaining

G(~r, t |~r ′, t′) =
1√
2π

∫ ∞

0

dω
[
e−iωtG̃(~r, ω |~r ′, t′) + eiωtG̃(~r,−ω |~r ′, t′)

]
. (2.4)

By using this formula, we avoid negative values of ω, what simpli�es the develop-

ment of the method.

Next, adopting the Cartesian 
oordinates x and y of ~r, in terms of whi
h ∇2G̃ =
∂2G̃/∂x2 + ∂2G̃/∂y2 and δ(~r − ~r ′) = δ(x − x′)δ(y − y′), we take another Fourier

transform, now with respe
t to y, obtaining

d2 ¯̃G

dx2
(x, k, ω |x′, y′, t′)−

(

k2 − ω2

c2

)

¯̃G =
ei(ky

′+ωt′)

2π
δ(x− x′) , (2.5)

where

¯̃G(x, k, ω |x′, y′, t′) ≡ Fy{G̃(x, y, ω |x′, y′, t′)} =
1√
2π

∞∫

−∞

dy eikyG̃(x, y, ω |x′, y′, t′) .

We then solve the ordinary di�erential equation (2.5) under the 
onditions of


ontinuity and �niteness for all x as well as an extra 
ondition (as a 
onsequen
e
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of the delta fun
tion) whi
h follows from its integration in the in�nitesimal interval

(x′ − ε, x′ + ε) {
f. [2℄, se
tion 12.2}:

∫ ε

−ε

dx
d2 ¯̃G

dx2
(x, k, ω |x′, y′, t′)−

(

k2 − ω2

c2

)∫ ε

−ε

dx ¯̃G =
ei(ky

′+ωt′)

2π

∫ ε

−ε

dx δ(x− x′) .

The se
ond integral above tends to zero, be
ause it is the integral of a 
ontinuous

fun
tion in a in�nitesimal interval, and the last integral is equal to one. Carrying

out the �rst integral and letting ε → 0+, we obtain the jump 
ondition for d ¯̃G/dx
at x = x′

:

d ¯̃G

dx
(x′+, k, ω |x′, y′, t′)− d ¯̃G

dx
(x′−, k, ω |x′, y′, t′) =

ei(ky
′+ωt′)

2π
. (2.6)

Noti
e that (2.5) is a homogeneous di�erential equation, ex
ept for x = x′
; its

solution for k 6= ω/c is thus of the form

¯̃G(x, k, ω |x′, y′, t′)
∣
∣
∣
k 6=ω

c

=

{
c1 e

(a+bi)x + c2 e
−(a+bi)x (x < x′)

d1 e
(a+bi)x + d2 e

−(a+bi)x (x > x′) .
(2.7)

In this equation,

√

k2 − ω2/c2 ≡ ±(a+bi) (de
omposition of the square roots in

their real and imaginary parts). Also, be
ause of (2.6), it was ne
essary to 
onsider

arbitrary 
onstants for x < x′
, c1 and c2, di�erent from those for x > x′

, d1 and

d2. These 
onstants are to be determined by imposing the �niteness, 
ontinuity

and jump 
onditions. On
e found

¯̃G(x, k, ω |x′, y′, t′), we 
an begin 
al
ulating the

inverse Fourier transforms, F
−1
y { ¯̃G} = G̃ �rst:

G̃(x, y, ω |x′, y′, t′) =
1√
2π

∫ ∞

−∞

dk e−iky ¯̃G(x, k, ω |x′, y′, t′) . (2.8)

But before doing so, let us make three observations:

1. For real k and ω (variables introdu
ed in the Fourier transforms), either a or

b vanishes, that is, ab = 0. But, in this work, k is not a real variable. In

fa
t, the method des
ribed herein 
onsists in evaluating the Fourier inversion

integral in (2.8) by 
onsidering it as a 
ontour integral along the real axis of

the k-plane and then deforming this path of integration into another like those

in Figures 3 to 5. Clearly, for the 
omplex values of k along the new paths,

ab 6= 0 most often.

2. We need to 
onsider only a > 0. In fa
t, that we 
an take a ≥ 0 without

loss of generality is obvious, and the results for a = 0 are not ne
essary for

the following reason: The set S of points of the k-plane 
orresponding to

a = 0 are those in the real axis segment between −ω/c and ω/c as well as

in the imaginary axis, and Figures 3 to 5 show that any of the new paths of

integration 
ontains a �nite number of points of S (two points, to be pre
ise).

This means that a �nite number of values of

¯̃G(x, k, ω |x′, y′, t′) given by (2.7)

with a = 0 are integrated along the new paths [in 
ontrast with the in�nite
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number of values along the real path in (2.8)℄, and sin
e these values are �nite,

their 
ontribution to the integral is negligible. As a 
on
lusion, there is no

need to 
onsider a = 0.

3. Noti
e that (2.7) is not valid for k = ω/c (that is, for a = b = 0); but a valid

expression for this 
ase is not ne
essary, be
ause the point k = ω/c never

belongs to the new path of integration (
.f. Figures 3 to 5).

Let us now pro
eed 
ompleting the determination of

¯̃G. In (2.7), we set c2 =
d1 = 0 to avoid in�nite values for x → ±∞. Requiring 
ontinuity at x = x′

, that

is, G(x′+, k, ω |x′, y′, t′) = G(x′−, k, ω |x′, y′, t′), we 
an eliminate d2, obtaining

¯̃G(x, k, ω |x′, y′, t′) =

{
c1 e

(a+bi)x (x ≤ x′)

c1 e
2(a+bi)x′

e−(a+bi)x (x ≥ x′) .

By using (2.6), the jump 
ondition, we �nd c1 = − e−(a+bi)x′

ei(ky′+ωt′)

4π(a+bi) , whose

substitution in the equation above furnishes the desired solution of (2.5):

¯̃G(x, k, ω |x′, y′, t′) = − ei(ky
′+ωt′)

4π(a+ bi)
×
{
e−(a+bi)(x′−x) (x ≤ x′)

e−(a+bi)(x−x′) (x ≥ x′) ,

or

¯̃G(x, k, ω |x′, y′, t′) = −e−
√

k2−ω2/c2 |x′−x|+ i(ky′+ωt′)

4π
√

k2 − ω2/c2
,

with Re
√

k2 − ω2/c2 > 0 (be
ause a > 0).
We now use this result in the inversion Fourier integral given by (2.8):

G̃(x, y, ω |x′, y′, t′) =
−1

4π
√
2π

∞∫

−∞

dk
√

k2 − ω2/c2
e−|X|

√
k2−ω2/c2 − i(kY−ωt′), (2.9)

where X ≡ x− x′
and Y ≡ y − y′.

Considering, as already mentioned, the integral in (2.9) as a 
ontour integral

along the real axis of the 
omplex plane of k = kx + iky, let us 
hange the variable
k to another 
omplex variable ζ = φ+ iu as follows

2

:

k = −ω

c
cos ζ = −ω

c
cos(φ+ iu) = −ω

c
cosφ coshu

︸ ︷︷ ︸

kx

+ i
ω

c
sinφ sinhu

︸ ︷︷ ︸

ky

, (2.10)

from whi
h, as indi
ated,

kx = −(ω/c) cosφ coshu and ky = (ω/c) sinφ sinhu . (2.11)

2

Instead of (2.10), we 
ould have performed the 
hange of variables k = (ω/c) cos(φ + iu), or
even k = (ω/c) sin(φ + iu) with φ ∈ [−π/2, π/2] and u ∈ (−∞,∞), and only a few modi�
ations

in the development would be ne
essary.
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Figure 1: The domain and image of the

map de�ned by (2.10).

These equations with φ ∈ [0, π] and u ∈
(−∞,∞) de�ne a map from the strip of

the ζ-plane shown in Figure 1 to the whole
k-plane. Figure 2 shows that a verti
al

straight line φ = 
onstant (6= 0, π/2 or π)
is mapped to a hyperbola (in the left half

plane if φ = φ1 < π/2 or the right one if

φ = φ2 > π/2) and that a horizontal line

segment u = 
onstant (6= 0) is mapped to

a half ellipse (in the upper half plane if

u = u1 > 0 or the lower one if u = u2 <
0). In fa
t, in the k-plane, (2.11) with φ = φ0 (6= 0, π/2 or π) or u = u0 (6= 0) 
an
be seen respe
tively as the parametrization of:

• the left (if φ0 < π/2) or right (if φ0 > π/2) bran
h of the hyperbola

[
kx

−(ω/c) cosφ0

]2

−
[

ky
(ω/c) sinφ0

]2

= 1

• the upper (if u0 > 0) or lower (if u0< 0) half of the ellipse

[
kx

−(ω/c) coshu0

]2

+

[
ky

(ω/c) sinhu0

]2

= 1

In addition, (2.11) with φ = 0 or π des
ribes the portion of the real axis from −∞
to −(ω/c) or that from (ω/c) to ∞, respe
tively; with φ = π/2, the imaginary axis;

and with u = 0, the portion of the real axis from −ω/c to ω/c.
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Figure 2: The map in (2.10): hyperbolas and half ellipses as images of verti
al

straight lines and horizontal line segments, respe
tively. (A line in the φu-plane
and its image are both drawn with the same pattern and oriented with the same

kind of arrow.)

We will evaluate the integral in (2.9) for the 
ontour C = E1 ∪H ∪E2 depi
ted

in Figure 3, but with R → ∞, where:
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Figure 3: The 
ontour C used to evaluate the integral in (2.9).

• E1 is the ellipti
al path given by (2.11) with u = u0 = cosh−1(cR/ω) and φ
varying from 0 to a suitable value φ0 yet to be determined

• H is the hyperboli
 path given by (2.11) with φ = φ0 and u varying from u0

to −u0

• E2 is the ellipti
al path given by (2.11) with u = −u0 and φ varying from φ0

to π

In (2.9) we are fa
ed with the problem of 
hoosing the 
orre
t bran
h of the

square root z(k) ≡
√

k2 − ω2/c2 = ±|z(k)| exp[i arg z(k)]. Let us pro
eed 
onsider-

ing both bran
hes simultaneously (we will rea
h a point at whi
h 
onsisten
y will

impose the 
orre
t one):

√

k2 − ω2/c2 = ±i (ω/c) sin ζ = ±i (ω/c) sin(φ+ iu) .

Therefore, using this and (2.10), we have that

dk
√

k2 − ω2/c2
=

(ω/c) sin ζ dζ

±i (ω/c) sin ζ
= ∓i dζ = ∓i (dφ+ idu) = ∓(−du+ idφ) (2.12)

and also that the exponent appearing in (2.9) 
an be written as follows:

−|X |
√

k2 − ω2/c2 − i (kY − ωt′) =

−|X |
[

± i
ω

c
sin(φ + iu)

]

− i
[

− ω

c
cos(φ+ iu)Y − ωt′

]

=

∓ i
ω

c
|X | (sinφ coshu+ i cosφ sinhu) − i

[

− ω

c
(cosφ coshu− i sinφ sinhu)Y −ωt′

]

=
ω

c

(
± |X | cosφ+ Y sinφ

)
sinhu+ i

ω

c

[
(∓|X | sinφ+ Y cosφ) coshu+ ct′

]
,

or

f(φ, u) ≡ −|X |
√

k2 − ω2/c2 − i (kY − ωt′) =
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ω

c
g(φ) sinh u+ i

ω

c

[
g′(φ) coshu+ ct′

]
, (2.13)

where

g(φ) ≡ ±|X | cosφ+ Y sinφ . (2.14)

The integral in (2.9) for the 
ontour C 
an be split in three integrals evaluated

on the three paths E1, H and E2 whi
h 
ompose C. Thus, using (2.12) and (2.13),

we 
an write (2.9) as follows:

G̃(~r, ω |~r ′, t′) =
−1

4π
√
2π

[∫

E1

+

∫

H

+

∫

E2

]

ef(φ,u) dk/
√

k2− ω2/c2
︸ ︷︷ ︸

∓(−du+i dφ)

=
±1

4π
√
2π

[

i

∫ φ0

0

dφ ef(φ,u0) −
∫ −u0

u0

du ef(φ0,u) + i

∫ π

φ0

dφ ef(φ,−u0)

]

. (2.15)

Now is the moment to determine φ0. This parameter 
an be found in su
h

a way that the two integrals with respe
t to φ in (2.15) (those evaluated on the

ellipti
al part of C) go to zero as R = (ω/c) coshu0 → ∞ (that is u0 → ∞), thereby


onsiderably simplifying the 
al
ulations. Indeed, using (2.13), we see that these two

integrals will tend to zero as u0 → ∞ if Ref(φ,±u0) = ±(ω/c) g(φ) sinhu0 → −∞,

what will o

ur if g(φ) < 0 in the �rst integral with respe
t to φ and g(φ) > 0 in

the se
ond one. This imposes the requirements

(a) g(φ0) = 0 and (b) g′(φ0) > 0 . (2.16)

Looking at (2.15) and (2.13), we see that we a
tually do not need φ0, but g(φ0)
and g′(φ0). In order to 
al
ulate g′(φ0), we need to develop (2.16a). Considering

(2.14), we have

g(φ0) = ±|X | cosφ0 + Y sinφ0 = 0 ⇒ X2 cos2 φ0 = Y 2 sin2 φ0

⇒ X2(1− sin2 φ0) = Y 2 sin2 φ0 ⇒ X2 = (X2 + Y 2) sin2 φ0 ,

from whi
h, solving for sinφ0 [the positive value is taken, be
ause φ0 ∈ (0, π)℄ and
then 
al
ulating cosφ0, we obtain

sinφ0 = |X |/ρ and cosφ0 = ∓Y sinφ0/|X | = ∓Y/ρ ,

where ρ =
√
X2 + Y 2 =

√

(x− x′)2 + (y − y′)2 = |~r − ~r ′| .

Figure 4: The 
ontour C for cosφ0 < 0.

0
 

 0cosw
c   

R 
x

k

yk

0 1E

2E

H
 

/c!
 

–R 

(Noti
e that cosφ0 may be negative, that

is, φ0 > π/2 ; in this 
ase, the 
ontour C
is like that in Figure 4.) Therefore, using

these results, we get

g′(φ0) = ∓|X | sinφ0 + Y cosφ0

= ∓X2/ρ∓ Y 2/ρ

= ∓(X2+ Y 2)/ρ = ∓ρ . (2.17)
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In this, in view of (2.16b), we 
hoose the plus sign. Sin
e this sign is the lower

one in the �∓� appearing in (2.17), in ea
h �±� and �∓� related to the two bran
hes

of

√

k2 − ω2/c2, the lower sign is also the 
orre
t one. The substitution of (2.16a)

and g′(φ0) = ρ in (2.13) then yields

f(φ0, u) =
ω

c
g(φ0)
︸ ︷︷ ︸

0

sinhu+ i
ω

c

[

g′(φ0)
︸ ︷︷ ︸

ρ

coshu+ ct′
]

= iω
[ρ

c
coshu+ t′

]

. (2.18)

With this and the fa
t that the �rst and third integrals tend to zero, we 
an

rewrite (2.15) as

G̃(~r, ω |~r ′, t′) =
−1

4π
√
2π

∫ ∞

−∞

du eiω[
ρ
c
coshu+t′] . (2.19)

Using (2.4) to 
al
ulate F
−1
t of this result, we obtain

G(~r, t |~r ′, t′) =
−1

8π2

∫ ∞

−∞

du

∫ ∞

0

dω
{

eiω[
ρ
c
coshu−(t−t′)] + e−iω[ρc coshu−(t−t′)]

}

=
−1

4π

∫ ∞

−∞

du

{
1

π

∫ ∞

0

dω cosω
[ρ

c
coshu− (t− t′)

]}

.

De�ning T ≡ t − t′, re
ognizing {
f. [8℄, equation (6.28)} that the last pair of

bra
es en
loses an integral representation of the delta fun
tion

δ [ (ρ/c) coshu− T ] = δ [ (ρ/c) (coshu− cT/ρ) ] = (c/ρ) δ (coshu− cT/ρ) ,

and 
hanging to the variable v = coshu, we 
an pro
eed the 
al
ulation as follows:

G(~r, t |~r ′, t′) =
−1

4π
2

∞∫

0

du
c

ρ
δ
(

coshu− cT

ρ

)

=
−c

2πρ

∞∫

1

dv√
v2 − 1

δ
(

v − cT

ρ

)

=
−c

2πρ
√

(cT/ρ)2 − 1
×
{
0 if cT/ρ < 1 i.e. −ρ/c+ T < 0
1 if cT/ρ > 1 i.e. −ρ/c+ T > 0

︸ ︷︷ ︸

U (−ρ/c+T )

,

where U(τ) is the unit step fun
tion (equal to 0 for τ < 0 and to 1 for τ > 0). We

thus obtain the �nal result

G(~r, t |~r ′, t′) = G(ρ, T ) =
−1

2π

U(−ρ/c+ T )
√

−(ρ/c)2 + T 2
[ ρ ≡ |~r − ~r ′| , T ≡ t− t′ ] ,

(2.20)

whi
h, ex
ept for the multipli
ative 
onstant (due to little di�eren
es in the form

of the wave equation 
onsidered), is the same expression obtained in referen
es [1,

equation (11.2.21)℄ and [9, p. 842, equation (7.3.15)℄, by using another method (by

integrating the 
orresponding three-dimensional Green's fun
tion).
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3. Advan
ed Green's Fun
tion for the Wave Equa-

tion

In the previous se
tion, it looks like (2.2) is never used. Nevertheless, the Green's

fun
tion given by (2.20) indeed satis�es that 
ausality 
ondition:

t < t′ ⇒ −ρ

c
+ T = −ρ

c
+ t− t′

︸ ︷︷ ︸

<0

< 0 ⇒ U(−ρ/c+ T
︸ ︷︷ ︸

<0

) = 0 ⇒ G(~r, t |~r ′, t′) = 0 .

We then may ask: To obtain the advan
ed Green's fun
tion, satisfying

G(~r, t |~r ′, t′) = 0 if t > t′ , (3.1)

what should be modi�ed in the 
al
ulational method des
ribed above? The answer

is simple but subtle: it is the 
ontour used to perform the inversion integral (2.9)

that needs modi�
ation. In
identally, a 
ontour formed with the hyperboli
 and

ellipti
al ar
s that arise in the 
hange of variable given by (2.10) is either 
ompatible

with (2.2) or (3.1). The 
ontour in Figure 3 is 
ompatible with (2.2). If we want

(3.1) to be satis�ed, the 
ontour C to be used is that in Figure 5. Let us 
on�rm

this.

0cosw
c   

/c! 
 

R
R 

xk

yk

0 

0
 

/c!
 

C
 

0
 

0

0u u
  ! "##
$ "##%

0

0u u
  ! "##
$ "  ##%

0u u
 "! "##
$ "##%

0

0
u u
 ! "##
$ " ##%

Figure 5: The 
ontour along whi
h the integral in (2.9) leads to the advan
ed

Green's fun
tion.

The integral in (2.9) for the 
ontour in Figure 5 
an be written in the form of

(2.15) with a few obvious 
hanges:

G̃(~r, ω |~r ′, t′) =
±1

4π
√
2π

[

i

φ0∫

0

dφ ef(φ,−u0) −
u0∫

−u0

du ef(φ0,u) + i

π∫

φ0

dφ ef(φ,u0)

]

, (3.2)

where f(φ, u) is still given by (2.13) and (2.14), remembering that the �±� indi
ates
the use of both bran
hes of

√

k2 − ω2/c2 . As R → ∞ (or u0 → ∞), Ref(φ,∓u0) =
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∓(ω/c) g(φ) sinhu0 → −∞ if g(φ) > 0 in the �rst integral above and g(φ) < 0 in

the third one, meaning that g(φ0) = 0, as in the previous 
ase, but now g′(φ0) < 0.
In this 
ase, it is the upper sign in the �∓� in (2.17) the 
orre
t one. Let us then

pro
eed from (3.2) with: (a) the upper sign in �±�; (b) u0 → ∞, thereby making

the �rst and third integrals go to zero; and (
) f(φ0) = iω[(−ρ/c) coshu+ t′] (from
(2.18) with −ρ in pla
e of ρ). By doing this, we obtain (2.19), but with −ρ in pla
e

of ρ, whi
h, developed as before, leads to a result similar to (2.20):

G(~r, t |~r ′, t′) =
−c

2πρ
√

(cT/ρ)2 − 1
×
{
0 if cT/(−ρ) < 1 i.e. −ρ/c− T < 0
1 if cT/(−ρ) > 1 i.e. −ρ/c− T > 0

︸ ︷︷ ︸

U (−ρ/c−T )

⇒ G(~r, t |~r ′, t′) = G(ρ, T ) =
−1

2π

U(−ρ/c− T )
√

−(ρ/c)2 + T 2
.

This is the advan
ed Green's fun
tion, satisfying (3.1):

t > t′ ⇒ −ρ

c
−T = −ρ

c
− (t− t′)
︸ ︷︷ ︸

>0

< 0 ⇒ U(−ρ/c− T
︸ ︷︷ ︸

<0

) = 0 ⇒ G(~r, t |~r ′, t′) = 0 .

4. Green's Fun
tion for the Helmholtz Equation

Green's fun
tion for the Helmholtz equation 
an be easily obtained from the pre-

vious results. In fa
t, with the de�nitions of the new 
onstants K ≡ ω/c and

α ≡ eiωt′/
√
2π (in the present 
ontext, the parameters t′ and ω are irrelevant) as

well as Γ (~r |~r ′ ) ≡ G̃(~r, ω |~r ′, t′), (2.3) takes the 
ommon form of the equation

whose solution is the Green's fun
tion Γ (~r |~r ′ ) for the Helmholtz equation:

∇2
Γ (~r |~r ′ ) +K2

Γ = α δ(~r − ~r ′) . (4.1)

Moreover, we have seen that (2.19), as it stands or with −ρ in pla
e of ρ, provides
an integral representation for G̃ = Γ . But these two forms, ex
ept for multipli
ative


onstants, 
an be re
ognized as known integral representations for the �rst or the

se
ond Hankel fun
tion of order zero (
f. equations (10) and (11) in [11℄, �6.21).

We thus see that (4.1) has the two well-known elementary solutions

Γ (~r |~r ′ ) =
−α

4π

∫ ∞

−∞

du e±iKρ coshu =

{

(−αi/4)H
(1)
0 (Kρ) for the �+� sign

(αi/4)H
(2)
0 (Kρ) for the �−� sign .

The de
ision to use either one, or a linear 
ombination of the two, depends on

whether the physi
al problem at hand involves only outgoing or in
oming waves (
f.

[7℄, Se
. 9.12, p. 470), or a superposition of these two kinds of waves.

5. Con
lusion

The main part of the 
al
ulations developed above 
onsists in solving Helmholtz

equation (2.3) to obtain its solution in the form of the integral representation given
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by (2.19). This is a
tually the derivation of Green's fun
tion for Helmholtz equation

(4.1), as explained in se
tion 3 (where that integral representation is re
ognized as

the �rst Hankel fun
tion of order zero). In the literature, there exists two alternative

methods for the 
al
ulation of this Green's fun
tion by dire
tly solving the two-

dimensional Helmholtz equation as well as two indire
t methods, in whi
h that

equation is not solved. With the intention of highlighting how di�erent is the

method des
ribed here, we present below a summary of all methods.

In this work, Green's fun
tion for the two-dimensional Helmholtz equation is ob-

tained by dire
tly solving this equation. First, a Fourier transform is used to redu
e

the two-dimensional problem into a one dimension problem whi
h is relatively easy

to solve. Next, by 
onsidering the 
orresponding inverse Fourier transform integral

as a 
ontour integral in the 
omplex plane and performing a suitable 
hange of

the 
omplex variable of integration, that integral 
an be 
onsiderably simpli�ed [4℄.

It then be
omes possible to identify this simpler integral with the forementioned

Hankel fun
tion as well as to perform the 
al
ulations beyond equation (2.19).

The �rst already existing dire
t method is given in referen
e [10℄, where the


al
ulation begins with the appli
ation of the two-dimensional Fourier transform.

Then, in order to evaluate the inverse Fourier double integral, 
ontour integration in

the 
omplex plane is used to perform one of the integrals, being ne
essary to 
arry

out a detailed analysis to determine the 
orre
t pres
ription for 
ir
umventing the

real poles of the integrand. Thereafter, the resulting integral, by means of a few

manipulations, is 
onverted into a known integral representation of that Hankel

fun
tion, thus ending the 
al
ulation.

The other dire
t method 
an be found in referen
es [5℄, equations (5.1.14) to

(5.1.16), or [6℄, se
tion 1.2.2, where symmetry 
onsiderations are used to turn the

problem one-dimensional, depending only on ρ = |~r − ~r ′|, in whi
h a nonhomoge-

neous Bessel equation of order zero, exhibiting a delta fun
tion δ(ρ) on the right-

hand side, has to be solved. The general solution of this di�erential equation is well

known for ρ 6= 0. Therefore, it only remains to determine the arbitrary 
onstants;

this is a

omplished by imposing the 
orre
t 
onditions for ρ → 0 and ρ → ∞ (to

satisfy this 
ondition at in�nity � the radiation 
ondition � it is easier to work with

the general solution formed with the Hankel fun
tions.)

One way of obtaining Green's fun
tion for the two-dimensional Helmholtz equa-

tion without solving dire
tly this di�erential equation is by employing the method

of des
ent (see referen
e [3℄, Ch. VI, �12, 3), by means of whi
h the solution of the

two-dimensional problem is obtained by integrating the solution of the 
orrespond-

ing easier three-dimensional problem with respe
t to the variable whi
h spans the

dimension being eliminated (the Cartesian variable z, in the 
ase).

Another indire
t way (see referen
e [1℄, se
tion 13.2.2) is as follows: one �rst

relates Green's fun
tion for the wave equation, G(~r, t |~r ′, t′), to Green's fun
tion

for the Helmholtz equation, Γ (~r |~r ′), and then, having determined the former

(e.g., by des
enting from the easier three-dimensional problem), he uses this re-

lationship to 
al
ulate the latter. The �rst step is a

omplished by noting that

the stationary wave des
ribed by Helmholtz equation is a parti
ular 
ase of the

generi
 wave motion des
ribed by the wave equation, from whi
h it follows that

Γ (~r |~r ′) =
∫ t

−∞ G(~r, t |~r ′, t′) eiω0(t−t′) dt′.
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The importan
e of a new method for a problem already solved resides in the

method itself, for it is likely to have other appli
ations. This is true even if su
h

method be
omes more involved in that parti
ular problem, be
ause this may not

happen in others. In fa
t, greater generality often requires more elaboration.

Resumo. Este trabalho des
reve a apli
ação de novas metodologias para o 
ál
ulo

das transformadas de Fourier inversas que forne
em as funções de Green asso
iadas

às equações da onda e de Helmholtz em todo o domínio bidimensional.

Palavras-
have. Equação da onda, bidimensional, função de Green.
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