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Abstract. This work describes the application of new methodologies for the eval-
uation of the inverse Fourier transforms that yield Green’s functions for both the
wave and Helmholtz equations in the entire bidimensional domain.
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1. Introduction

Green’s functions for wave problems, both time-dependent and stationary ones,
governed by the wave and Helmholtz equations, respectively, in unbounded domains
having one, two or three dimensions have well known expressions (cf. reference [1],
sections 11.2 and 13.2.2). The Fourier transform serves well in their determination,
but the evaluation of the inversion integral in two dimensions — the case considered
in this work — is the most challenging.

For the Helmholtz equation, reference [9], on pp. 822-824, states that the in-
version can be performed by using contour integration together with a change of
complex variables of the type given in equation (2.10) below, but does not reveal
the steps of the calculation. Later on, reference [4], on pp. 173-176, shows a little
more thereof, but still as an outline which is hard to follow.

It is thus our purpose to offer here a detailed description of this methodology,
but, to make an innovation, we apply it to the wave equation. Both retarded
(Section 2) and advanced (Section 3) Green’s functions are calculated. Green’s
functions for the Helmholtz equation are also obtained as a by-product (Section 4).
We conclude the exposition with final comments (Section 5).
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2. Retarded Green’s Function for the Wave Equa-
tion

Green’s function G(7,t| 7', t') for the wave equation in a boundless two-dimensional
domain is the solution of

1 9*G

V2G(F |7 ) — = —
(Ta |T7 ) 2 Ot

= 8(F— 7)ot —1t) | (2.1)

with ¥ and 7/ in R?, and ¢t and ¢ in R. In this section, we consider the retarded or
causal Green’s function, for which

Grt|r' t)y=0 if t<t . (2.2)

To solve the problem defined by (2.1) and (2.2), we first take the Fourier trans-
form of (2.1) with respect to ¢, obtaining

V2G(Fw |7 ) + (w/e)?G = 6(F — ') eV /\/2r (2.3)

where

G(Fw|7 t) = FAGF |7 )} = \/%/_OodtemG(ﬁtlf',t') .

To compute the inverse transform G = F,'{G} = (2r) Y2 [*_ dw e7 '@, we mod-
ify this formula a little, by splitting the integral in the intervals (—oo,0) and (0, 00)
and performing the changing of variable w — —w in the first integral, obtaining

1 S L L
Gt ¢ :—/ dwle 7 “'G(Fw |7 t) + “'G(F, —w |7, t)] . (24
F ) = = | e G w7 8) £ GE ] 78] (24)

By using this formula, we avoid negative values of w, what simplifies the develop-
ment of the method.

Next, adopting the Cartesian coordinates x and y of 7, in terms of which V2G =
092G /0% + 892G /0y? and 6(F — 7') = 6(x — 2')0(y — y'), we take another Fourier
transform, now with respect to y, obtaining

U

2

ISH

w2 - ei(ky’ert’)
22 (Iak7w|$/7y/7t/)_ <k2_ C_2> G = 275($_I/) ) (25)
o

U

where

= N T
Gz, kw2 y t) = F {G(z,y,w |2,y t)} = > /dye‘kyG(x,y,wM',y’,t’) )
T

=

We then solve the ordinary differential equation (2.5) under the conditions of
continuity and finiteness for all x as well as an extra condition (as a consequence
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of the delta function) which follows from its integration in the infinitesimal interval
(' —e, 2’ +¢) {cf. |2], section 12.2}:

€ d2é 2 € _ i(ky'+wt’) e
/de@(;v,k,wM’,y’,t’) — (k2 - CZ—2> / dr G = eT/ drd(x —2') .

—E —€

The second integral above tends to zero, because it is the integral of a continuous
function in a infinitesimal interval, and the last integral is equal to one. Carrying
out the first integral and letting ¢ — 0%, we obtain the jump condition for dG/dx
at © =a;

dG dG eilky +et))

_(xl+7kuw|x/7ylut/)_ _(xl_uk7w|xlvylvtl) = 2
s

dx dx (2:6)

Notice that (2.5) is a homogeneous differential equation, except for x = 2/; its
solution for k # w/c is thus of the form

(:?(;v,k,w|x’,y’,t’)

e e(a+bi)z + ¢ ef(aeri)m (I < {El) (2 7)
e '

dl e(aeri)ac 4 d2 ef(a+bi)z (I > :E/)

In this equation, y/k? — w?/c? = +(a+ bi) (decomposition of the square roots in
their real and imaginary parts). Also, because of (2.6), it was necessary to consider
arbitrary constants for x < ’, ¢; and ¢, different from those for x > 2/, d; and
d>. These constants are to be determined by imposing the finiteness, continuity
and jump conditions. Once found G(z, k,w|2’,y,t'), we can begin calculating the
inverse Fourier transforms, F,{G} = G first:

1 e o E
G(z,y,w|z' ¢, t :—/ dk e % Ga, kw2, y ) . 2.8
(z,y,w|a’,y',t") N ( |2’y 1) (2.8)
But before doing so, let us make three observations:

1. For real k and w (variables introduced in the Fourier transforms), either a or
b vanishes, that is, ab = 0. But, in this work, k£ is not a real variable. In
fact, the method described herein consists in evaluating the Fourier inversion
integral in (2.8) by considering it as a contour integral along the real axis of
the k-plane and then deforming this path of integration into another like those
in Figures 3 to 5. Clearly, for the complex values of k£ along the new paths,
ab # 0 most often.

2. We need to consider only a > 0. In fact, that we can take a > 0 without
loss of generality is obvious, and the results for a = 0 are not necessary for
the following reason: The set S of points of the k-plane corresponding to
a = 0 are those in the real axis segment between —w/c and w/c as well as
in the imaginary axis, and Figures 3 to 5 show that any of the new paths of
integration contains a finite number of points of S (two points, to be precise).
This means that a finite number of values of é(,’E, kyw|2',y',t') given by (2.7)
with @ = 0 are integrated along the new paths [in contrast with the infinite
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number of values along the real path in (2.8)], and since these values are finite,
their contribution to the integral is negligible. As a conclusion, there is no
need to consider a = 0.

3. Notice that (2.7) is not valid for k¥ = w/c (that is, for a = b = 0); but a valid
expression for this case is not necessary, because the point k¥ = w/c never
belongs to the new path of integration (c.f. Figures 3 to 5).

Let us now proceed completing the determination of G. In (2.7), we set co =
dy = 0 to avoid infinite values for x — +oo. Requiring continuity at z = 2/, that
is, G’ T, kw2, y ') = Gz’ , k,w|2’,y', '), we can eliminate dz, obtaining

_ (a+bi)x !
A N S (I sw )
Gz kwla' ) t) = { ¢y e2lattz’ g=(atbi)e (5 > gf)

By using (2.6), the jump condition, we find ¢; = —ef(aji:r?ai(;z e , whose

substitution in the equation above furnishes the desired solution of (2.5):

Gla, kw|a',y ) =

)

ellky’ +wt’) e~ (a+bi)(z'—x) (x < ,TI)
~ 4m(a + bi) | e (et @—a’) (x> a)
e—w/k:Q—wz/c2 |z’ —z| + i(ky’ +wt’)

4d\/k? — w?/c? ’
with Re/k? —w?/c? >0 (because a > 0).

We now use this result in the inversion Fourier integral given by (2.8):

or

é(il?, kvw | 'I/vy/vt/) = -

G, yw|a o 1) = e XIVRTE —iay =) - (9.9)

17 dk
47T\/27T/\/k2—w2/c2

where X =z —2' and Y =y — ¢/'.

Considering, as already mentioned, the integral in (2.9) as a contour integral
along the real axis of the complex plane of k = k; + ik, let us change the variable
k to another complex variable ¢ = ¢ + iu as follows?:

k= —ECOSC = —gcos(qﬂ—iu) = —gcosqﬁcoshu +i£sin¢sinhu ,  (2.10)
c c c c

K ky
from which, as indicated,

ky = —(w/c)cos¢coshu and k, = (w/c)singsinhu . (2.11)

2Instead of (2.10), we could have performed the change of variables k = (w/c) cos(¢ + iu), or
even k = (w/c)sin(¢ + iu) with ¢ € [—7/2, 7/2] and u € (—o0,00), and only a few modifications
in the development would be necessary.
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These equations with ¢ € [0, 7] and u € U Ak
(—00,00) define a map from the strip of k=—"Ycos¢
the (-plane shown in Figure 1 to the whole
k-plane. Figure 2 shows that a vertical
straight line ¢ = constant (# 0,7/2or7) 0 7
is mapped to a hyperbola (in the left half ¢-plan
plane if ¢ = ¢; < 7/2 or the right one if

¢ = ¢2 > w/2) and that a horizontal line

segment u = constant ( 0) is mapped to Figure 1: The domain and image of the
a half ellipse (in the upper half plane if map defined by (2.10).

u = uy > 0 or the lower one if u = us <

0). In fact, in the k-plane, (2.11) with ¢ = ¢¢ (£ 0,7/2 or 7) or u = ug (#£ 0) can
be seen respectively as the parametrization of:

1

[}

w)
i
ie)
&
&

o the left (if ¢g < 7/2) or right (if ¢o > 7/2) branch of the hyperbola

o) - o) -

o the upper (if up > 0) or lower (if ug < 0) half of the ellipse

o) E ) -

In addition, (2.11) with ¢ = 0 or 7 describes the portion of the real axis from —oo
to —(w/c) or that from (w/c¢) to oo, respectively; with ¢ = 7/2, the imaginary axis;
and with u = 0, the portion of the real axis from —w/c to w/e.

u A

Uy 9

U

Figure 2: The map in (2.10): hyperbolas and half ellipses as images of vertical
straight lines and horizontal line segments, respectively. (A line in the ¢u-plane
and its image are both drawn with the same pattern and oriented with the same
kind of arrow.)

We will evaluate the integral in (2.9) for the contour C'= Ey U H U E; depicted
in Figure 3, but with R — oo, where:
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C =FE, UH UE,

Figure 3: The contour C used to evaluate the integral in (2.9).

e E) is the elliptical path given by (2.11) with u = uy = cosh™*(¢R/w) and ¢
varying from 0 to a suitable value ¢y yet to be determined

e H is the hyperbolic path given by (2.11) with ¢ = ¢ and u varying from wg
to —ug

e [ is the elliptical path given by (2.11) with u = —ug and ¢ varying from ¢
tom

In (2.9) we are faced with the problem of choosing the correct branch of the
square root z(k) = \/k? — w?/c? = £|z(k)|exp[iarg z(k)]. Let us proceed consider-
ing both branches simultaneously (we will reach a point at which consistency will
impose the correct one):

k2 —w?/c? = +i(w/e)sin¢ = +i (w/c) sin(¢ + iu) .
Therefore, using this and (2.10), we have that

h_(wfdsncde o
2 _o?/@  H(w/esinC Fid¢ = Fi(do +idu) = F(—du+idp) (2.12)

and also that the exponent appearing in (2.9) can be written as follows:
—|X|\V/k2—w?/c?2 — i(kY —wt') =
LW . . w . /
—|X|{:|:1—sm(¢+1u)] - 1[— —cos(qﬁ—i—lu)Y—wt} =
c c
Fi g|X| (sin g coshu +icos¢sinhu) — i [ - L—u(cosqﬁcoshu —isingsinhu)Y —wt’]
c c

= g(:I: |X|cos¢ + Y sing) sinhu+ig[(:F|X|singb—l—Ycosgb)coshu—l—ct’] )
c c

flo,u) = —|X|Vk? —w?/c2 — i(kY —wt') =

or
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%g(@ sinh u + i% [g'(¢) coshu +ct'] | (2.13)

where
g(¢) = £|X|cosp+Ysing . (2.14)

The integral in (2.9) for the contour C' can be split in three integrals evaluated
on the three paths F1, H and FE» which compose C. Thus, using (2.12) and (2.13),
we can write (2.9) as follows:

G(Fw|7 / / /} (1) Jk//k2 — w2 /2
(Fw |7t 47“/%{& . / w?/e

zF( du+ide)

+1 { /(250 Foao) _ [ g, of (Bow) " dpef@mw | (2.15)
= i de e P10 —/ du e’ (P00 —|—i/ dg e\ uo } 2.15
47/ 27 0 uo 0

Now is the moment to determine ¢y. This parameter can be found in such
a way that the two integrals with respect to ¢ in (2.15) (those evaluated on the
elliptical part of C) go to zero as R = (w/c¢) coshug — oo (that is ug — 00), thereby
considerably simplifying the calculations. Indeed, using (2.13), we see that these two
integrals will tend to zero as ug — oo if Re f(¢, Tug) = £(w/c) g(¢) sinh ug — —oo,
what will occur if g(¢) < 0 in the first integral with respect to ¢ and g(¢) > 0 in
the second one. This imposes the requirements

(a) g(do) =0 and (b) g'(d0) >0 . (2.16)

Looking at (2.15) and (2.13), we see that we actually do not need ¢g, but g(¢o)
and ¢'(¢o). In order to calculate g’(¢p), we need to develop (2.16a). Considering
(2.14), we have

g(do) = £|X|cospg + Y singg =0 = X2cos? gy = Y?sin? ¢y
= X2(1-sin?¢p) =Y?sin’¢pg = X2=(X2+Y?)sin?¢o ,

from which, solving for sin ¢ [the positive value is taken, because ¢o € (0,7)] and
then calculating cos ¢, we obtain

singo = [X[/p  and  cosgy = FY singo/|X| =FY/p ,

wherep:\/X2+Y2:\/(x—x’)2+(y—y’)2:|F—F’|.

(Notice that cos ¢9 may be negative, that

is, ¢o > m/2; in this case, the contour C

Figure 4: The contour C for cos¢g < 0. is like that in Figure 4.) Therefore, using
: these results, we get

g'(¢o) = F|X|sin gy + Y cos ¢
=FXpFY?/p
=F(X?+YH)/p=Fp . (2.17)
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In this, in view of (2.16b), we choose the plus sign. Since this sign is the lower
one in the “F” appearing in (2.17), in each “£” and “F” related to the two branches
of \/k? —w?/c?, the lower sign is also the correct one. The substitution of (2.16a)
and ¢'(¢o) = p in (2.13) then yields

w . LW / !/ . p !/
f(éo,u) = = g(¢po)sinhu + i— [g (¢o) coshu + ct ] =iw {— coshu +¢ } . (2.18)
C N~ C I~ C

0 P

With this and the fact that the first and third integrals tend to zero, we can
rewrite (2.15) as

-1 0

= ﬂ du eiw[% coshu—i—t/] _ (219)

G(Fw |7 t)

Using (2.4) to calculate F,” " of this result, we obtain

_1 o0 (o)
Gt t) = — d
I
-1 [ 1
= — du {—/ dw cosw[gcoshu—(t—t’)}}
T J_ T Jo c

Defining T' = t — t/, recognizing {cf. [8], equation (6.28)} that the last pair of
braces encloses an integral representation of the delta function

dw {eiw[g cosh uf(tft’)] + efiw[g cosh uf(tft’)]}

d[(p/c)coshu —T]=0d][(p/c)(coshu —cT/p)] = (¢/p)d (coshu —cT/p) ,

and changing to the variable v = coshu, we can proceed the calculation as follows:

oo

-1 c cT —c 7 dv cT
GFEt|#'t) = —2[du-9§ hou— —)=— [ == §5(v—
(7t |7, 1) 4Wl/1”)(wsu ) %p/)vz—l(v )

0 if IT/p<l ie. —p/e+T <0

—C
21p /(cT/p)2—1x{1 it ¢T/p>1 ie. —p/c+T>0 >

U (=p/etT)

where U(7) is the unit step function (equal to 0 for 7 < 0 and to 1 for 7 > 0). We
thus obtain the final result

_ 1 U(=p/e+T)

G t|7,t) = G(p, T
(P17 E) = Gl T) = 50— s

=|Fr-7, T=t-t
[p=] ; :

(2.20)
which, except for the multiplicative constant (due to little differences in the form
of the wave equation considered), is the same expression obtained in references [1,
equation (11.2.21)] and [9, p. 842, equation (7.3.15)], by using another method (by
integrating the corresponding three-dimensional Green’s function).
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3. Advanced Green’s Function for the Wave Equa-
tion

In the previous section, it looks like (2.2) is never used. Nevertheless, the Green’s
function given by (2.20) indeed satisfies that causality condition:

t<t = LoTr="L it V<0 U-pletT)=0 = GFt|7,t)=0.
c c S~—~— ~——
<0 <0
We then may ask: To obtain the advanced Green’s function, satisfying
Grt|r't)y=0 if t>t | (3.1)

what should be modified in the calculational method described above? The answer
is simple but subtle: it is the contour used to perform the inversion integral (2.9)
that needs modification. Incidentally, a contour formed with the hyperbolic and
elliptical arcs that arise in the change of variable given by (2.10) is either compatible
with (2.2) or (3.1). The contour in Figure 3 is compatible with (2.2). If we want
(3.1) to be satisfied, the contour C' to be used is that in Figure 5. Let us confirm
this.

4

Figure 5: The contour along which the integral in (2.9) leads to the advanced
Green’s function.

The integral in (2.9) for the contour in Figure 5 can be written in the form of
(2.15) with a few obvious changes:

o ug ™
~ +1 .
GFwl|7,t) = i/d el (#—wo) _ /duef(“b"’“) —|—i/d ef (@) | (3.2
Flr = 2 fao [ 32
—uo 0

where f(¢,u) is still given by (2.13) and (2.14), remembering that the “£” indicates
the use of both branches of y/k? — w?/c? . As R — oo (or ug — o0), Re f(¢, Fup) =
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F(w/c) g(¢) sinhug — —oo if g(¢) > 0 in the first integral above and g(¢) < 0 in
the third one, meaning that g(¢o) = 0, as in the previous case, but now ¢’(¢g) < 0.
In this case, it is the upper sign in the “F” in (2.17) the correct one. Let us then
proceed from (3.2) with: (a) the upper sign in “£”; (b) uo — oo, thereby making
the first and third integrals go to zero; and (c) f(¢o) = iw[(—p/c) coshu + '] (from
(2.18) with —p in place of p). By doing this, we obtain (2.19), but with —p in place
of p, which, developed as before, leads to a result similar to (2.20):

—c X{O it cT/(—p)<1l ie. —p/c—T <0
21/ (T /p)% — 1 1 if I/(=p)>1 ie. —p/c—=T>0
U (=p/e=T)
S Gt ) = GlpT) = = HCpleZT)
27 P+ T2
This is the advanced Green’s function, satistying (3.1):

tst = L= L 1) <0 = Uple—T)=0 = GF |7 t)=0.
c C  —— N——

G(rt| ' t") =

>0 <0

4. Green’s Function for the Helmholtz Equation

Green’s function for the Helmholtz equation can be easily obtained from the pre-
vious results. In fact, with the definitions of the new constants K = w/c and
o = ¢! /\/27 (in the present context, the parameters ¢ and w are irrelevant) as
well as T'(F|7') = G(F,w|7',t'), (2.3) takes the common form of the equation
whose solution is the Green’s function I'(7|7") for the Helmholtz equation:

VAr(F|#' )+ K°T = ad(F —7') . (4.1)

Moreover, we have seen that (2.19), as it stands or with —p in place of p, provides
an integral representation for G = I'. But these two forms, except for multiplicative
constants, can be recognized as known integral representations for the first or the
second Hankel function of order zero (cf. equations (10) and (11) in [11], §6.21).
We thus see that (4.1) has the two well-known elementary solutions

_ 0o . P (1) R
[‘(7?| 7?’) = _a / du eilecoshu — ( a1/4) H?Q) (Kp) for the “+" S¥gn
dr J_w (ai/4) Hy” (Kp) for the “—” sign .

The decision to use either one, or a linear combination of the two, depends on
whether the physical problem at hand involves only outgoing or incoming waves (cf.
[7], Sec. 9.12, p. 470), or a superposition of these two kinds of waves.

5. Conclusion

The main part of the calculations developed above consists in solving Helmholtz
equation (2.3) to obtain its solution in the form of the integral representation given
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by (2.19). This is actually the derivation of Green’s function for Helmholtz equation
(4.1), as explained in section 3 (where that integral representation is recognized as
the first Hankel function of order zero). In the literature, there exists two alternative
methods for the calculation of this Green’s function by directly solving the two-
dimensional Helmholtz equation as well as two indirect methods, in which that
equation is not solved. With the intention of highlighting how different is the
method described here, we present below a summary of all methods.

In this work, Green’s function for the two-dimensional Helmholtz equation is ob-
tained by directly solving this equation. First, a Fourier transform is used to reduce
the two-dimensional problem into a one dimension problem which is relatively easy
to solve. Next, by considering the corresponding inverse Fourier transform integral
as a contour integral in the complex plane and performing a suitable change of
the complex variable of integration, that integral can be considerably simplified [4].
It then becomes possible to identify this simpler integral with the forementioned
Hankel function as well as to perform the calculations beyond equation (2.19).

The first already existing direct method is given in reference [10], where the
calculation begins with the application of the two-dimensional Fourier transform.
Then, in order to evaluate the inverse Fourier double integral, contour integration in
the complex plane is used to perform one of the integrals, being necessary to carry
out a detailed analysis to determine the correct prescription for circumventing the
real poles of the integrand. Thereafter, the resulting integral, by means of a few
manipulations, is converted into a known integral representation of that Hankel
function, thus ending the calculation.

The other direct method can be found in references [5], equations (5.1.14) to
(5.1.16), or [6], section 1.2.2, where symmetry considerations are used to turn the
problem one-dimensional, depending only on p = | — 7’|, in which a nonhomoge-
neous Bessel equation of order zero, exhibiting a delta function §(p) on the right-
hand side, has to be solved. The general solution of this differential equation is well
known for p # 0. Therefore, it only remains to determine the arbitrary constants;
this is accomplished by imposing the correct conditions for p — 0 and p — oo (to
satisfy this condition at infinity — the radiation condition — it is easier to work with
the general solution formed with the Hankel functions.)

One way of obtaining Green’s function for the two-dimensional Helmholtz equa-
tion without solving directly this differential equation is by employing the method
of descent (see reference [3], Ch. VI, §12, 3), by means of which the solution of the
two-dimensional problem is obtained by integrating the solution of the correspond-
ing easier three-dimensional problem with respect to the variable which spans the
dimension being eliminated (the Cartesian variable z, in the case).

Another indirect way (see reference [1], section 13.2.2) is as follows: one first
relates Green’s function for the wave equation, G(7,¢|7',t'), to Green’s function
for the Helmholtz equation, I'(¥|7’), and then, having determined the former
(e.g., by descenting from the easier three-dimensional problem), he uses this re-
lationship to calculate the latter. The first step is accomplished by noting that
the stationary wave described by Helmholtz equation is a particular case of the
generic wave motion described by the wave equation, from which it follows that
L7 = [ GF |7 t) eolt=) gy,
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The importance of a new method for a problem already solved resides in the
method itself, for it is likely to have other applications. This is true even if such
method becomes more involved in that particular problem, because this may not
happen in others. In fact, greater generality often requires more elaboration.

Resumo. Este trabalho descreve a aplicacao de novas metodologias para o calculo
das transformadas de Fourier inversas que fornecem as funcoes de Green associadas
as equagoes da onda e de Helmholtz em todo o dominio bidimensional.

Palavras-chave. Equacao da onda, bidimensional, fun¢ao de Green.
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