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One reminds for all function f : Rn → R the so-called (min,+)-wavelets which are
lower and upper hulls build from (min,+) analysis [Gon96, Gon99]. One shows
that this analysis can be applied numerically to the Weierstrass and Weierstrass-
Mandelbrot functions, and that one recovers their theoretical Hölder exponents and
fractal dimensions.

1. Introduction

Genesis of wavelets theory started in 1946 with D. Gabor[Gab46], who introduced
the Windowed Fourier Transform (WFT)

f̂(ω, τ) =

∫ ∞
−∞

exp(−ıωt)f(t)g(t− τ)dt (1.1)

for the local spectral analysis of radar signals. The localization is reached due to

fast decaying window function g(x)
|x|→∞→ 0. Even if WFT exhibits many power-

ful and practical features, there are some defects compared to Fourier Transform.
The transform (1.1) can not resolve e�ciently wavelengths longer than the win-
dow g(x) width. Conversely, for signal with high frequencies, short decomposition
needs a broad window with a large number of periods. Thus, signal reconstruction
in this case adds a large number of terms with comparable amplitudes and hence
becomes numerically unstable. Finally, one needs a scheme with a wide window
for low frequency signals and a narrow window for high frequency ones. Such a
scheme, was independently suggested as a tool for geophysical studies by several
authors at the beginning of 1980s[Mor81, Zim81]. Wavelets Theory (WT) word was

∗michel.gondran@polytechnique.org
†kenou�@s-core.fr

1



2 Dr Michel GONDRAN, Dr Abdel KENOUFI

introduced in analysis by J.Morlet[MAF82, GM84]. It is considered nowadays as a
preferable alternative to the Fourier analysis, used where and when the signals are
random and comprised of �uctuations of di�erent scales, such as in turbulence phe-
nomena. WT has been immediately followed by several applications in science and
engineering, such as signal processing and detection, fractals, self-similar objects,
self-similar random processes, like turbulence and Brownian motion[Alt05]. WT
was then mathematically formalized by Grossman and Morlet[GM84], Goupillaud
et al, [GGM85], Daubechies[Dau88] and some other authors. Practically, WT is a
separate convolution of the signal in question with a family of functions obtained
from some basic one, the basic wavelet called mother wavelet or analysing function,
by shifts τ and dilatations a :

Wψ(τ, a)f =

∫ ∞
−∞

1√
a
ψ̄

(
t− τ
a

)
f(t)dt. (1.2)

An interesting point of view is to consider WT as a realization of a function decom-
position with respect to the representation of the a�ne group[Alt05] : x 7→ ax+ b.
We refer the reader to useful and interesting articles[AAB+95, Far92, SF98, Ast94,
Dau92, Chu92] and both theoretical and practical book [Alt05].
Nevertheless, wavelets decompositions are limited by their linear features. This
present article aims to apply for pathological functions such as Weierstrass functions,
a non-linear transform, called (min,+) transform, which has been already de�ned
within (min,+) analysis [Gon96, Gon99, MG08]. This one consists to replace in the
scalar product de�nition of two real-valued functions f and g de�ned on a domain
X, the real number �eld (R,+,×) with the (min,+) dioid (R∪{+∞},min,+). The
classical scalar product 〈f, g〉 =

∫
x∈X f(x)g(x)dx becomes then the (min,+) scalar

product[Gon96] :
〈f, g〉(min,+) = inf

x∈X
{f(x) + g(x)}.

The demonstration that it is a scalar product within the (min,+) dioid is
straightforward and easy excepted for its linearity.
One has to show that 〈f, g〉min+ is distributive according to min, which means
〈f,min{g1, g2)〉(min,+) = min{〈f, g1〉(min,+), 〈f, g2〉(min,+)), and linear according to
the addition of a scalar λ : 〈f(x), λ+ g(x)〉(min,+) = λ+ 〈f, g〉(min,+). The linearity
is obvious since infx∈X{f(x) +λ+ g(x)} = λ+ infx∈X{f(x) + g(x)}. Distributivity
is obtained in two steps. One has �rst to prove this equality with mean of two
inequalities. We start �rst with the simple relations :

〈f, g1〉(min,+) 6 f(x) + g1(x), and 〈f, g2〉(min,+) 6 f(x) + g2(x), ∀x.

This gives min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 min{f(x)+g1(x), f(x)+g2(x)} ∀x.
And since

min{f(x) + g1(x), f(x) + g2(x)} = f(x) + min{g1(x), g2(x)},

one has min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 f(x) + min{g1(x), g2(x)} ∀x, which
yields to the inequality

min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 〈f,min{g1, g2}〉(min,+). (1.3)
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In a second step, one can write

〈f,min{g1, g2}〉(min,+) 6 f(x) + min{g1(x), g2(x)} 6 f(x) + g1(x) ∀x,

which becomes

〈f,min{g1, g2}〉(min,+) 6 〈f, g1〉(min,+). (1.4)

and in the same manner

〈f,min{g1, g2}〉(min,+) 6 f(x) + min{g1(x), g2(x)} 6 f(x) + g2(x) ∀x,

giving now

〈f,min{g1, g2}〉(min,+) 6 〈f, g2〉(min,+), (1.5)

and then from (1.4) and (1.5)

〈f,min{g1, g2}〉(min,+) 6 min{〈f, g1〉(min,+), 〈f, g2〉(min,+)}. (1.6)

From relations (1.3) and (1.6), one deduces �nally the equality and thus the dis-
tributivity.
With this (min,+) scalar product, one obtains a distribution-like theory : the op-
erator is linear and continuous according the dioid structure (R ∪ {+∞},min,+),
non-linear and continuous according to the classical structure (R,+,×). The non-
linear distribution δmin(x) de�ned as

δ(min,+)(x) = {0 if x = 0,+∞ else}

is similar in (min,+) analysis to the classical Dirac distribution. Then, one has

〈δ(min,+), f〉(min,+) = min
x∈X
{δ(min,+)(x) + f(x)} = min{f(0),+∞} = f(0).

In (min,+) analysis, the Legendre-Fenchel transform which permits to get Hamil-
tonian from Lagrangian and which has an important role in physics is similar in
(min,+) analysis to the Fourier transform in the classical one [MG08].
In this article, we explore how (min,+)-wavelets decomposition and reconstruc-
tion could be an interesting signal processing tool, since (min,+) transforms can
be applied to a larger class of functions than the functions treatd with classical
wavelets transforms, especially to lower semi-continuous functions[Gon96], such as(
x 7→ g(x) · Floor(x)

)
for instance, where g is a continuous function.

In this paper, one focus on Weierstrass and Weierstrass-Mandelbrot functions which
are classical examples of functions continuous everywhere but di�erentiable nowhere[Wei67]s.
One introduces in the following section (2) the (min,+)-wavelets decomposition and
reconstruction of a signal with mean of (min,+) scalar product. In section (3), we
show how the (min,+)-wavelets allow a characterisation of Hölder functions. In
section (4), we apply these results to numerical calculations of Hölder exponents of
Weierstrass-like functions and compare them to the theoretical values[Tri93]. This
permits to deduce immediately their fractal dimensions .
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2. (min,+)-wavelets

The usual wavelet transform of a function f from Rn to R is a linear transform
de�ned for all scales a ∈ R+ and points b ∈ Rn, which can be computed according
to the equation (1.2) :

Tf (a, b) = a−n
∫ +∞

−∞
f(x)Ψ

(x− b
a

)
dx

where Ψ is a function called mother wavelet or analysing function. It has to be zero
average and exhibiting oscillations until a certain order p. This can be written as∫ ∞

−∞
xmΨ(x)dx = 0, ∀m, 1 ≤ m ≤ p (2.7)

In (min,+) analysis, a set of non-linear transforms has been introduced for
lower semi-continuous functions [Gon96, MG08], the so-called (min,+)-wavelets
transforms which are de�ned for a function f : Rn → R and for all a ∈ R+ and
b ∈ Rn such as :

T−f (a, b) = inf
x∈Rn

{
f(x) + h

(x− b
a

)}
(2.8)

where h is a basis analysing function (upper semi-continuous and inf-compact
verifying h(0)=0), like the following functions :

hα(x) =
1

α
|x|α with α > 1 and h∞(x) = {0 if |x| < 1,+∞ else}.

Since T−f (a, x) ≤ f(x) for all a > 0, T−f (a, x) is a lower hull of f(x). For any lower
bounded and lower semi-continuous function, one has a reconstruction formula like
in the linear wavelets theory [Alt05] :

f(x) = sup
a∈R+,b∈Rn

{
T−f (a, b)− h

(x− b
a

)}
, (2.9)

which can be simpli�ed within the (min,+) theory in

f(x) = sup
a∈R+

T−f (a, x). (2.10)

The (min,+)-wavelets analysis will be based on simultaneous analysis of lower
hulls T−f (a, b), and upper hulls of f represented by T+

f (a, b) de�ned by :

T+
f (a, b) = sup

x∈Rn

{
f(x)− h

(x− b
a

)}
. (2.11)

For the upper hulls T+
f (a, b), we have a reconstruction formula which is sym-

metric to lower hulls T−f (a, b) (2.9,2.10) :
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f(x) = inf
a∈R+,b∈Rn

{
T+
f (a, b) + h

(x− b
a

)}
(2.12)

which simpli�es as well as :

f(x) = inf
a∈R+

T+
f (a, x). (2.13)

For each analysing function h, one has [Gon99]:

T−f (a, x) ≤ f∗(x) ≤ f(x) ≤ f∗(x) ≤ T+
f (a, x), (2.14)

because T−f (a, x) (respectively T+
f (a, x)) are functions decreasing with scales

(respectively increasing) and converging to f∗(x) (respectively f∗(x)), the lower
semi-continuous closure of f (respectively upper semi-continuous closure) of f when
the scale tends to 0.

Remark 1. - We use the word "wavelet" by analogy with linear wavelets since the

decomposition and reconstruction formula are very similar and since one just re-

places the usual real number �eld (R,+,×) with the (min,+) dioid (R∪{+∞},min,+).
Another name can be (min,+) pen or (min,+) hulls.

Remark 2. - The shift and scale parameters have the same meaning as in Linear

Wavelet Theory : for high frequencies, one needs small scales, and the inverse as

well. But the relation between them is not simply proportionally inverse as in linear

theory, because it depends on the choice of analyzing function hα, and this introduces
non-linear dependency between scale and frequency. This leads to a relation such

as ν = γ(a, α), where ν, and a are respectively the frequency and the scale, and γ a

non-linear function decreasing with a.

De�nition 1. - (min,+)-wavelet is de�ned as the couple {T−f (a, x), T+
f (a, x)}.

For all R+, the a-oscillation of f is de�ned :

∆Tf (a, x) = T+
f (a, x)− T−f (a, x). (2.15)

In the case of analysing function h∞, one has T+
f (a, x) = sup|x−y|≤a f(y),

T−f (a, x) = inf |x−y|≤a f(y) and ∆Tf (a, x) = sup|x−y|≤a f(y)− inf |x−z|≤a f(z) corre-
sponds to the a-oscillation de�ned in one dimension by Tricot [Tri93]: oscaf(x) =
supy,z∈[x−a,x+a][f(y)− f(z)].

3. Characterisation of Hölderian functions with (min,+)
analysis

The calculations of oscillations according to the analysing function and the scale
will permit to study the global and local regularity of a function.
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Figure 1: (min,+)-wavelets decomposition for the Weierstrass truncated function

W (t) =
15∑
m=0

2−
m
2 cos(2mt) with the analysing function h2 for scales k · 10−1 with k

from 1 to 10.

First, let's start with the case of global regularity of a Hölderian function for which
it exists H (0 < H ≤ 1) and a constant K such as

|f(x)− f(y)| ≤ K|x− y|H ∀ x, y ∈ Rn. (3.16)

It is a su�cient but not necessary condition for a function to be continuous. In
the case of fractal function, K is related to its fractal dimension.

THEOREM 1. - The function f is Hölderian with exponent H, 0 < H ≤ 1, if
and only if it exists a constant C such as for all a, one of the following condition

is veri�ed :

∆Tf (a, x) ≤ CaH if h = h∞, (3.17)

∆Tf (a, x) ≤ Ca
αH
α−H if h = hα and α > 1. (3.18)

Demonstration:

• Demonstration for the case of analysing function h∞ is classic [Tri93]: if f
veri�es (3.17), let's consider some x and y in Rn. One can assume that
f(x) ≥ f(y). Then, one has

a = |x− y|, sup
|x−z|≤a

f(z) ≥ f(x) ≥ f(y) ≥ inf
|x−z|≤a

f(z),
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this yields to

|f(x)− f(y)| ≤ ∆Tf (a, x) ≤ KaH ≤ K|x− y|H .

Conversely, let's assume that |f(x)− f(y)| ≤ K|x− y|H for all y. Let y1 such
as f(y1) = sup|x−z|≤a f(z) and y2 such as f(y2) = inf |x−z|≤a f(z). One has
then

∆Tf (a, x) = f(y1)− f(y2) = f(y1)− f(y) + f(y)− f(y2),

which yields to

∆Tf (a, x) ≤ |f(y1)− f(y)|+ |f(y)− f(y2)| ≤ 2KaH .

- In the case of analysing functions hα, α > 1, let's suppose �rst that f veri�es
(3.18). We consider x and y in Rn with f(x) ≥ f(y). Reconstruction equation
(3.23) of f(x) can be written as

f(x) = inf
a∈R+,b∈Rn

{
T+
f (a, b) + h

(x− b
a

)}
,

and the equation of reconstuction for f(y) (2.10)

f(y) = sup
a∈R+

T−f (a, y)

One deduces

f(x)− f(y) = inf
a∈R+,b∈Rn

{
(T+
f (a, b) + h

(x− b
a

)
− T−f (a, y)

}
,

thus

f(x)−f(y) ≤ inf
a∈R+

{
T+
f (a, y)+h

(x− y
a

)
−T−f (a, y)

}
≤ inf
a∈R+

{
Ca

αH
α−H +h

(x− y
a

)}
and the optimisation on the scale a implies that it exists K such as |f(x) −
f(y)| ≤ K|x− y|H .
Conversely, let's assume that |f(x)−f(y)| ≤ K|x−y|H for all x and y. Using
(2.10) and (2.11), one has

∆Tf (a, b) = sup
x,y

{
f(x)− f(y)− h

(x− b
a

)
− h
(y − b

a

)}
.

We deduce that

∆Tf (a, b) ≤ sup
x,y

{
K|x− y|H − h

(x− b
a

)
− h
(y − b

a

)}
,

whose optimisation gives (3.18).�



8 Dr Michel GONDRAN, Dr Abdel KENOUFI

Let's consider now the case of local irregularity at x0 where the function is
Hölderian : it exists H (0 < H ≤ 1) and a constant K such as

|f(x)− f(x0)| ≤ K|x− x0|H ∀ x ∈ Rn. (3.19)

THEOREM 2. - The function f is Hölderian at point x0, with exponent H, 0 <
H ≤ 1, if and only if it exists a constant C such as for all a, one has one of the

following conditions :

∆Tf (a, x) ≤ C(aH + |x− x0|H) if h = h∞ (3.20)

∆Tf (a, x) ≤ C(a
αH
α−H + |x− x0|H) if h = hα et α > H (3.21)

Demonstration:

• In the case of the analysing function h∞, if f veri�es (3.20) for all x, let
a = |x − x0|. One has then inequations sup|x−x0|≤a f(z) ≥ f(x) ≥ f(x0) ≥
inf |x−z|≤a f(z) or sup|x−x0|≤a f(z) ≥ f(x0) ≥ f(x) ≥ inf |x−z|≤a f(z). In both
cases one gets

|f(x)− f(x0)| ≤ ∆Tf (a, x) ≤ 2C|x− x0|H .

Conversely, let suppose |f(x)− f(x0)| ≤ K|x− x0|H for all x, and y1 such as
f(y1) = sup|x−z|≤a f(z) and y2 such as f(y2) = inf |x−z|≤a f(z); One has then

∆Tf (a, x) = f(y1)−f(y2) = f(y1)−f(x0)+f(x0)−f(y2) ≤ K(|y1−x0|H+|y2−x0|H),

that means

∆Tf (a, x) ≤ K(|y1 − x|H + |x− x0|H + |y2 − x|H + |x− x0|H),

this yields to
∆Tf (a, x) ≤ 2K(aH + |x− x0|H).

• For analysing functions hα, α > 1, we assume �rst that f veri�es (3.21). Let's
consider x in Rn and the two cases, f(x) ≥ f(x0) f(x), and ≤ f(x0). In the
�rst case, one uses the reconstruction equations

f(x) = inf
a∈R+,b∈Rn

{
T+
f (a, b) + h

(x− b
a

)}
(3.22)

and
f(x0) = sup

a∈R+

T−f (a, x0).

For the second case, one uses a symmetric reconstruction method. This yields
to

f(x) = inf
a∈R+,b∈Rn

{
T+
f (a, b) + h

(x− b
a

)
− T−f (a, x0)

}
, (3.23)
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which gives

|f(x)− f(x0)| ≤ inf
a∈R+

{
T+
f (a, x0) + h

(x− x0
a

)
− T−f (a, x0)

}
,

|f(x)− f(x0)| ≤ inf
a∈R+

{
Ca

αH
α−H + C|x− x0|H + h

(x− x0
a

)}
.

This implies that it exists a constant K such as

|f(x)− f(x0)| ≤ K|x− x0|H .

Conversely, let suppose that |f(x)−f(x0)| ≤ K|x−x0|H for all x. With mean
of (2.10) and (2.11), one has

∆Tf (a, b) = sup
x,y

{
f(x)− f(y)− h

(x− b
a

)}
.

Since

f(x)− f(y) = f(x)− f(x0) + f(x0)− f(y),

one deduces

∆Tf (a, b) ≤ sup
x,y

{
K|x− x0|H +K|y − x0|H − h

(x− b
a

)
− h
(y − b

a

)}
,

which yields to

∆Tf (a, b) ≤ 2 sup
x

{
K|x−x0|H−h

(x− b
a

)}
≤ 2 sup

x

{
K|x−b|H+K|b−x0|H−h

(x− b
a

)}
.

whose optimisation gives (3.21). �

One gets here a reciprocal relation which is not fully obtained with linear
wavelets [Jaf00].

4. Hölder exponents calculation for Weierstrass func-

tions

We exhibit an application of the (min,+)-wavelets analysis to the Weierstrass func-
tion in order to compute its Hölder exponent H and its fractal dimension D. This
one is the a typical example of function continuous everywhere but nowhere di�er-
entiable [Wei67]. One consider the general form of Weierstrass functions on [0, 2π]

W (t) =

∞∑
m=0

(ω−H)mcos(ωmt+ ϕm), (4.24)
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Figure 2: Logarithm of ∆TWM (s) according to scale logarithm with h∞ decompo-
sition of the Weierstrass-Mandelbrot function, H = 1

2 , ω = 2. The slope is obtained
with mean of linear regression and its value is 0.496. The theoretical value is 1

2 .
That is a relative error of 0.5%.
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Figure 3: Logarithm of ∆TWM (s) according to scale logarithm with h2 decomposi-
tion of the Weierstrass-Mandelbrot function, H = 1

2 , ω = 2. The slope is obtained
with mean of linear regression and its value is 0.655. The theoretical value is 2

3 .
That is a relative error of 1.8%.

with ωH > 1 and {ϕm}m≥0 .
Those functions are Hölderian (and anti-Hölderian) with coe�cient H and fractal
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dimension [JLKY84, Hun98] :

D = 2 +
logω−H

logω
= 2−H. (4.25)

One calculates for all scales s = k · scalemin with k an integer from 1 to 10 and
scalemin = 10−2, the following function of scale for h2 and h∞

∆T f (s) =

∫
T

∆Tf (s, t)dt.

For the Weierstrass function, the upper bound of the sum is replaced with a �nite
constant M = 15 which is su�cient for our tests. Thus, the truncated Weierstrass
function can be written as

W (t) =

15∑
m=0

2−
m
2 cos(2mt+ ϕm),

and is represented with its (min,+)-wavelets decomposition on Figure (1) for ϕm =
0.
We made numerical calculations to determine Hölder exponents. The fractal di-
mension is then directly given by equation (4.25). Computations were performed
for H ∈ { 12 ,

1
4}, ω = 2, for analysing functions h∞ and h2, for both cases of zero

and random ϕm with a uniform probability measure in [0, 2π].
The slope of the linear part of curves for small scales gives the value of Hölder
exponent.
Hölder exponents calculations for random phase Weierstrass functions are summa-
rized on Tables (1,2). According to equations (3.17, 3.18), the slopes and Hölder
exponents are very close to the theoretical value H = 1

2 for h∞ and 2H
2−H = 2

3 for

h2 [Tri93, Hun98]. The fractal dimension is then given by D = 2 −H = 3
2 . Same

result for H = 1
4 with a slope of H = 1

4 for h∞ and 2
7 for h2. They con�rm that the

Hölder exponents and fractal dimensions of Weierstrass function remain the same
in the case of a uniform random phase [JLKY84, Hun98].

The Weierstrass function W (t) =
∞∑
m=0

(ω−H)m cos(ωmt), veri�es

W (ωt) = ωH{W (t)− cos(t)}, (4.26)

which is not a scaling invariance property [Tri93]. In order to circumvent that,
one can build the Weierstrass-Mandelbrot function

WM(t) =

∞∑
m=−∞

(ω−H)m{1− cos(ωmt)}, (4.27)

Since WM(ωt) =
∞∑

m=−∞
(ω−H)m{1− cos(ωm+1t)}, the change of variable m′ =

m+1 leads toWM(ωt) = ωHWM(t), which has scaling invariance property. Hölder
exponents calculations for a truncated version of this function are exhibited on
Figures (2,3), con�rming thus the validity of (min,+)-wavelets decomposition for
its Hölder exponents computation.
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Theoretical Hölder exponent H 1
4 = 0.250 1

2 = 0.500
Theoretical slope 1

4 = 0.250 1
2 = 0.500

Numerical Hölder exponent H 0.253 0.507
Numerical slope 0.253 0.507

Slope relative error (%) 1.2 1.4

Table 1: Numerical results for random phase Weierstrass function with ω = 2 and
(min,+)-wavelets decomposition performed with h∞.

Theoretical Hölder exponent H 1
4 = 0.250 1

2 = 0.500
Theoretical slope 2

7 ' 0.286 2
3 ' 0.667

Numerical Hölder exponent H 0.246 0.497
Numerical slope 0.280 0.661

Slope relative error (%) 2.0 0.9

Table 2: Numerical results for random phase Weierstrass function with ω = 2 and
(min,+)-wavelets decomposition performed with h2.

5. Conclusion and perspectives

We have presented in this article a promising tool to determine numerically Hölder
exponents of Weierstrass-like functions which are exhibiting fractal properties. It is
based on (min,+) analysis and proposes a signal decomposition using the (min,+)
scalar product. By analogy with Linear Wavelet Theory, this permits to de�ne
(min,+)-wavelets , which are lower and upper hulls of a signal at a certain scale.
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