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ABSTRACT. In this work, we derive high order Equivalent Absorbing Boundary Conditions EABCs that
model the propagation of waves in semi-infinite bilayered acoustic media. Our motivation is to restrict the
computational domain in the simulation of seismic waves that are propagated from the earth and transmit-
ted to the stratified heterogeneous media composed by ocean and atmosphere. These EABCs are adapted
to Hagstrom-Warburton ABCs and appear as first and second order of approximation with respect to a
small parameter involved in a multiscale expansion. Computational tests illustrate the accuracy of the first
approximate model with respect to the small parameter.

Keywords: artificial boundaries, computational wave propagation, equivalent boundary conditions, hetero-
geneous media, acoustic waves.

1 INTRODUCTION

The numerical simulation of geophysical phenomena is of utmost importance in our society.
Considering the massive destruction seismic activities can generate, it is crucial to apply science
towards a better understanding of the impact of earthquake waves.

Part of the job is to obtain effective models yielding the numerical simulation of seismic activity
at an affordable computational cost – observe that running times are a very important factor
when dealing with eminent tragedies. On the other hand, a complete description of the physical
problem at hand is extremely intricated. In particular, it involves the coupling of elastic and
acoustic waves in heterogeneous media, and the absence of viscosity produces waves that travel
long distances without changing much their shape or amplitude. This aspect of the problem
generates difficulties for the numerical simulation, since the physical domain, if one includes
the atmosphere, is unbounded. Moreover, as waves propagate much slower in the atmosphere
than in the sea or in the subsurface, one has to consider meshes composed of very thin cells
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E-mails: julien.diaz@inria.fr; victor.peron@univ-pau.fr



�

�

“main” — 2015/1/27 — 13:06 — page 302 — #2
�

�

�

�

�

�

302 EQUIVALENT ABSORBING BOUNDARY CONDITIONS FOR HETEROGENEOUS ACOUSTIC MEDIA

in this region. Since the primary interest is to compute seismograms in the subsurface, it is
necessary to consider techniques allowing to reduce at most as possible the computations inside
the atmosphere. The imposition of artificial contours and appropriate boundary conditions (BCs)
is an aspect to be considered. Among many possibilities, one could use a non-reflecting BC,
defined through pseudo-differential operators [1, 2, 3, 4], or choose from a variety of approximate
BCs, such as PMLs [5, 6, 7] or Absorbing Boundary Conditions (ABCs) [8, 9, 10, 11, 12, 13]. In
this work the Hagstrom-Warburton ABC [10, 14] is chosen. The benefit of implementing non-
reflecting BCs is discussed in [8] and it has been proven in [15] that the Hagstrom-Warburton
ABC is equivalent to the popular Higdon ABC, with advantages with respect to implementation
and computational cost.

However, even when using High-Order BCs, the artificial boundary should be placed at a distance
ε of the subsurface, in order to avoid spurious reflections. Hence, it is still necessary to mesh
the small layer of the atmosphere with very thin cells. In this work, an alternative method is
proposed, based on the use of asymptotic techniques in order to obtain Equivalent BCs that we
could impose directly at the interface between the atmosphere and the subsurface.

The concept of equivalent boundary conditions (ECs) has become well-known in the mathemat-
ical modeling of wave propagation phenomena [16, 17, 18, 19, 20]. Such conditions are usually
used to reduce and simplify the computational domain, replacing an exact model that must be
applied in the periphery of the domain by an artificial contour and a BC that resembles the effects
of the exact model on the part of the domain that was excluded. The main tool for the construc-
tion of ECs are two scale asymptotic expansions on the parameter defining the thickness of the
layer to be eliminated.

A key hypothesis for the validation of this technique relies on the smallness of the ratio between
the thickness of the layer to be eliminated and the remainder of the domain, typically with re-
spect to the wavelength. It is worth to notice that the original physical problem inspiring this
work does not satisfy such hypothesis. As a matter of fact in the original problem the atmo-
sphere layer is an unbounded layer. What motivates this model is that, according to [14], it is
possible to approximate the solution in the unbounded domain with any set precision tolerance
if one applies an ABC of order high enough. At this stage, therefore, the focus is on the approx-
imation of this problem with an absorbing boundary, rather than the physical problem with an
unbounded layer.

The originality of this work is the derivation of ECs adapted to Hagstrom-Warburton ABCs, that
will be called Equivalent Absorbing Boundary Conditions (EABCs). The EABCs appear as a first
and second order approximations (Section 3.2) with respect to the small parameter and which
are satisfied by the acoustic pressure. This paper presents a preliminary study that illustrates the
feasibility of the approach. It focuses essentially on the formal derivation of EABCs and on the
numerical accuracy of low order EABCs.

This article is organized as follows. In Section 2, we introduce the mathematical model. Section 3
is devoted for the equivalent boundary conditions obtained through asymptotical methods. We
conclude presenting some numerical results obtained so far.

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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2 MATHEMATICAL MODELLING

In this work, a region of interest consisting of two media (ocean and atmosphere, for instance)
is considered. Starting from a rectangularly shaped, double layered spatial model (see Fig. 1),

where the boundaries �+, �−, �W and �E are artificial. The focus here is on the treatment of �+
defined as an absorbing boundary, whereas the countours �W and �E are modeled as periodical
boundaries and a Dirichlet boundary condition (BC) is set on �− (4). The Dirichlet data f set

on �− can be thought as a forcing term generated by waves that were transmitted to �− from
an elastic media underneath �−. The goal is to obtain a reduced model for the acoustic pressure
p− in �− of a wave with frequency ω that propagates with velocity c1 in �− and is transmitted

to �+
ε (ε is the thickness of the layer �+

ε ) with velocity c2. Denoting by κ1 = ω
c1

, κ2 = ω
c2

one has

(� + κ2
2 )p+ = 0 in �+

ε (1)

(� + κ2
1 )p− = 0 in �− (2)

p+ = p− and c2
2

∂

∂n
p+ = c2

1
∂

∂n
p− on � (3)

p− = f on �− (4)

(
−a0ıκ2 + ∂

∂n

) P∏
j=1

(
−a j ıκ2 + ∂

∂n

)2

p+ = 0 on �+ (5)

complemented with periodic BCs set on �W and �E :

p±|�W = p±|�E and
∂

∂n
p±|�W = ∂

∂n
p±|�E (6)

Figure 1: Simplified spatial model and its contours. The contour �+ is artificial and demands an

absorbing boundary condition.

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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The time-harmonic wave field is characterized by using the Helmholtz equations (1)-(2) for the

acoustic pressures p+ in �+
ε and p− in �−. The transmission conditions (3) require that the

pressures and the normal velocities match on the interface �; the first condition results from the
equilibrium of forces on �. The boundary condition (5) is a Higdon BC [9] and coefficients a j ∈
(0, 1] are given parameters. Rewriting (5) according to the Hagstrom-Warburton formulation
[10, 14, 15], adapted to the problem stated in the frequency domain, BC (5) becomes

(
−a0ıκ2 + ∂

∂n

)
p+ = −ıκ2φ1 (7)

(
−a j ıκ2 + ∂

∂n

)
φ j =

(
−a j ıκ2 − ∂

∂n

)
φ j+1, j = 1, . . . , P (8)

φP+1 = 0. (9)

Here the functions φ j ( j = 1, . . . , P +1) are auxiliary variables, defined on �+ and in a vicinity
V which is located above the domain �+

ε , and we assume that (7)-(8)-(9) hold on �+ ∪ V .

Then, following the procedure stated in [10], we have that (� + κ2
2 )φ j = 0 in V ; what leads to

the elimination of the normal derivatives with respect to the boundary �+. This yields rewriting
(7)-(9) as

(
−a0ıκ2 + ∂

∂n

)
p+ = −ıκ2φ1 on �+ (10)

−κ2
2 L
 = M

∂2

∂x2

 + 2

∂2

∂x2
p+ �e1 on �+ (11)

where 
 = (φ1, . . . , φP )T and L, M are tridiagonal matrices P × P whose entries li j and mi j

depend on the parameters a j . More specifically,

l11 = 1 + a2
1 + 2a1a0, l12 = 1 − a2

1, l j, j+1 = a j−1(1 − a2
j ), j = 2, ..., P − 1

l j, j−1 = a j (1 − a2
j−1), l j j = a j(1 + a2

j−1) + a j−1(1 + a2
j ), j = 2, ..., P

m11 = a1 + a0, m12 = a0, m j, j+1 = a j−1, j = 2, ..., P − 1

m j, j−1 = a j , m j j = a j + a j−1, j = 2, ..., P

Unlike (7)-(8)-(9), the formulation (10)-(11) involves only the values of φ j on the boundary

�+. This decreases considerably the computational cost of numerical simulations. Finally the
problem of interest writes (1)-(4) with the BCs (6) and (10)-(11).

3 MAIN RESULTS – EQUIVALENT CONDITIONS

In the framework above, it is possible to replace the region �+
ε by appropriate boundary condi-

tions (BCs) set on � called equivalent absorbing boundary conditions (EABCs). Firstly, a two-
step formal derivation of EABCs is presented. In Section 3.2, the first two EABCs are stated.
Elements of derivation are presented in Section 3.3.

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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3.1 Formal derivation of equivalent conditions

First step: a multiscale expansion. The first step consists to derive a multiscale expansion for
the solution p+ = p+

ε , p− = p−
ε and 
 = 
ε of the problem (1)-(4) complemented with the

BCs (6)-(10)-(11): it possesses an asymptotic expansion in power series of the small parameter ε

p+(x) = p+
0 (x; ε) + εp+

1 (x; ε) +O(ε2) in �+
ε , p+

j (x; ε) = � j

(
x,

y

ε

)
;

p−(x) = p−
0 (x) + εp−

1 (x) + O(ε2) in �−;

(x, ε) = 
0(x) + ε
1(x) + O(ε2). (12)

Here x = (x, y) ∈ R2 are the cartesian coordinates. The “profiles” � j are defined on � × (0, 1)

whereas the terms p−
j (resp. 
 j ) are defined in �− (resp. on �).

Second step: construction of equivalent conditions. The second step consists to identify a
simpler problem satisfied by the truncated expansions

p−
k,ε := p−

0 + εp−
1 + ε2 p−

2 + · · · + εk p−
k in �−


k,ε = 
0 + ε
1 + ε2
2 + · · · + εk
k on �

up to a residual term inO(εk+1). The simpler problems are stated in Section 3.2 when k ∈ {0, 1}.
There holds (at least) formal estimates

‖p−
ε − pk

ε‖�− = O(εk+1) (13)

where pk
ε solves the simpler problem, an equivalent model of order k.

3.2 Main results – Equivalent models

In the framework above, the equivalent models (EABCs) of order k ∈ {0, 1} are stated.

Order 0 model. p−
0 and 
0(x) = (φ1

0 , . . . , φP
0 )T (x) solves the problem

�p−
0 + κ2

1 p−
0 = 0 in �−(

−a0ıκ2 +
(

c1
c2

)2
∂
∂n

)
p−

0 = −ıκ2φ1
0 on �

−κ2
2 L
0 − M ∂2

∂x2 
0 = 2 ∂2

∂x2 p−
0 �e1 on �

p−
0 = f on �− ,

(14)

complemented with periodic BCs on �W and �E .

Order 1 model. p1
ε and 
1

ε(x) = (φ1
ε , . . . , φP

ε )T (x) solves the problem

�p1
ε + κ2

1 p1
ε = 0 in �−

(
−a0ıκ2 +

(
c1
c2

)2
∂
∂n

)
p1
ε = (−ıκ2 + εa0κ

2
2 )φ1

ε + ε
(

∂2

∂x2 p1
ε + κ2

2 (1 − a2
0)p1

ε

)
on �

−κ2
2 L
1

ε − M ∂2

∂x2 
1
ε = 2

(
(1 + εa0ıκ2)

∂2

∂x2 p1
ε − εıκ2

∂2

∂x2 φ1
ε

)
�e1 on �

p1
ε = f on �−

with periodic BCs set on �W and �E .

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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3.3 Derivation of equivalent models

After applying a change of scale y �→ Y = y
ε

in �+
ε , equations (1)-(4) complemented with the

BCs (10)-(11) become
(
ε−2 ∂2

∂Y 2 + ∂2

∂x2 + κ2
2

)
�+(x, Y ) = 0 in � × (0, 1)

(� + κ2
1 )p− = 0 in �−

�+ = p− on � (Y = 0)

c2
2ε

−1 ∂
∂Y �+ = c2

1
∂
∂n p− on � (Y = 0)

p− = f on �−
(−a0ıκ2 + ε−1 ∂

∂Y

)
�+(x, 1) = −ıκ2φ1(x)

−κ2
2 L
(x, ε) = M ∂2

∂x2 
(x, ε) + 2 ∂2

∂x2 �+(x, 1) �e1

Here �+(x,
y
ε ) = p+(x, y) and 
 =: (φ1, . . . , φP )T .

Equations for the first asymptotics. Substituting the ansatz (12) for p+, p− and 
 into previous
equations and performing the identification of terms with the same power of ε, a collection of

equations for the coefficients (p−
j , � j ) and 
 j is obtained. One finds that (p−

0 , �0) and 
0 =
(φ1

0 , . . . , φP
0 )T solve

∂2

∂Y 2
�+

0 = 0 in � × (0, 1) (15)

(� + κ2
1 )p−

0 = 0 in �− (16)

�+
0 = p−

0 on � (Y = 0) (17)

c2
2

∂

∂Y
�+

0 = 0 on � (Y = 0) (18)

p−
0 = f on �− (19)

∂

∂Y
�+

0 (x, 1) = 0 (20)

−κ2
2 L
0(x) = M

∂2

∂x2

0(x) + 2

∂2

∂x2
�+

0 (x, 1) �e1 (21)

with periodic BCs set on �W and �E , and (p−
1 , �1, 
1) solves

∂2

∂Y 2 �+
1 = 0 in � × (0, 1) (22)

(� + κ2
1 )p−

1 = 0 in �− (23)

�+
1 = p−

1 on � (Y = 0) (24)

c2
2

∂

∂Y
�+

1 = c2
1

∂

∂n
p−

0 on � (Y = 0) (25)

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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p−
1 = 0 on �− (26)

−a0ıκ2�+
0 (x, 1) + ∂

∂Y
�+

1 (x, 1) = −ıκ2φ1
0(x) (27)

−κ2
2 L
1(x) = M

∂2

∂x2

1(x) + 2

∂2

∂x2
�+

1 (x, 1) �e1 (28)

with periodic BCs set on �W and �E .

Construction of the first asymptotics and equivalent conditions. From (15), (18) and (20),

�+
0 must have the form

�+
0 (x, Y ) = α0(x).

Equation (17) provides α0(x) = p−
0 (x, 0). Also, from (22) one has

�+
1 (x, Y ) = β0(x) + β1(x)Y.

Additionally, (25) provides

c2
2β1(x) = c2

1
∂

∂n
p−

0 (x, 0)

whereas equation (27) rewrites as

−a0ıκ2α0(x) + β1(x) = −ıκ2φ1
0(x).

Therefore one gets

c2
2a0ıκ2 p−

0 (x, 0) = c2
1

∂

∂n
p−

0 (x, 0) + c2
2ıκ2φ1

0(x).

Finally (21) and �+
0 (x, Y ) = α0(x) = p−

0 (x, 0) yield

−κ2
2 L
0(x) = M

∂2

∂x2

0(x) + 2

∂2

∂x2
p−

0 (x, 0) �e1,

where

0(x) = (φ1

0 , . . . , φP
0 )T (x)

providing the order 0 model (14). Further computations also provide the order 1 model, Sec-

tion 3.2.

4 NUMERICAL RESULTS

For the model problem considered, our findings indicate that the use of an equivalent absorbing
boundary condition can be a viable and effective alternative for numerical simulation; mainly for

the gain in computational cost provided by such conditions.

The numerical solution was obtained using the Interior Penalty Discontinuous Galerkin Method
[21] with P3 elements. The normal derivative of p0 that arise after applying the classical IPDG
discretization to the first equation of (14) is replaced using the second equation of (14).

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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Finally, the third equation of (14) is discretized by applying a 1D IPDG method on �. Hence, for

P = 1, we have to solve a linear system that reads as

(K2D + κ2
1 M2D)P + B2D1D
 = F

B1D2DP + (K1D + κ2
2 M1D)
 = 0,

(29)

where P and 
 are the vectors containing respectively the value of p0 and φ1
0 at their degrees of

freedom (recalling that φ1
0 is a 1D function defined only on �). M2D and K2D are the mass and

stiffness matrices obtained by the 2D IPDG method, M1D and K1D are the mass and stiffness
matrices obtained by the 1D IPDG method and B2D1D and B1D2D are the two matrices that

ensures the coupling between the two equations.

In a test problem, we have compared the solution of (1)-(4) with the boundary conditions (10)-
(11)-(6) for p− in �− with the solution p0 obtained using the order 0 model (14) here presented.
The Dirichlet data

f = exp

(
i
ω

c1
(x cos θ)

)
,

models the diffraction of an incident wave of frequency ω = 10 Hz and hitting the boundary �−
at an angle of θ = 5π

12 . Taking c1/c2 = 2, P = 1 (with a0 = 1 and a1 = 1) and modelling f
as an incident wave, we have reached relative errors below 0.2%, considering the ratio of 10−2

for ε/H , where H is the thickness of the layer �− (see Fig. 2). The results are summarized for

various values of ε/H in Table 1. The convergence rate coincides with the formal estimate (13)
when k = 0. It is worth to notice that in order to satisfy periodicity, the parameters chosen must
relate to the width L of the domain respecting L = 2qπc1

ω cos θ
, where q ∈ IN . Besides, there should

be some extra care in the choice of ω: it should not be too big (else the condition ε � 2πc1,2
ω

will not be satisfied) or too small (this would demand a very large domain, since L is inversely
proportional to ω). In the test case presented, c1 = 1500 m/s and L was set to approximately
1885 m. The triangular double layer meshes (necessary to compute p0) used had around 105

elements, with triangle sizes set around 0.08 in the thin layer and its vicinity.

Figure 2: Configuration of the numerical experiment.

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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Table 1: Comparative test between p− and p0. ‖p− − p0‖
refers to the euclidean distance between p− and p0 in a sam-
ple of 1000 points over a regular mesh on the domain �−.

ε/H ‖p− − p0‖ relative error

0.01 0.282 0.18%

0.001 0.0281 0.018%
0.0005 0.0141 0.009%
0.00025 0.00703 0.00449%

5 CONCLUSION

We have derived high order Equivalent Absorbing Boundary Conditions EABCs that model the
propagation of waves in semi-infinite bilayered acoustic media. The numerical results illustrate
the fact that for P = 1 and k = 0, the EABC models very accurately problem (1)-(4) with the

conditions (10)-(11) and (6), as soon as ε/H ≤ 0.0005. Obviously, for such small values of
ε/H , this problem is not able to reproduce accuratly the case where the upper media is infinite.
Hence, the next step will be to study the effect of P on the solution. This will provide a minimal

value P0 for which the EABC in (14) is efficient enough. Finally, the order 1 model is expected
to allow for considering higher values of ε/H and to provide a smaller value for P0, which would
reduce the number of auxiliary functions φ and the computational costs.

RESUMO. Partindo de uma modelagem no domı́nio de frequências, utilizamos condições

de contorno artificiais de Higdon e aproximações assintóticas para obter condições de con-

torno equivalentes que viabilizem a redução do domı́nio computacional para a simulação da

propagação de ondas em meios acústicos heterogêneos. A motivação para este trabalho é a

obtenção de condições de contorno artificiais e aproximadas para a simulação da propagação

de ondas sı́smicas, oriundas do interior da terra e transmitidas ao meio acústico heterogêneo

composto pelos oceanos e pela atmosfera.

Palavras-chave: contornos artificiais, condições de contorno equivalentes, ondas acústicas,

meio heterogêneo.
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