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ABSTRACT. Considering the fact that the transport of contaminants occur in small advection regime, a
residual estimator is used to evaluate the parabolic equation that describes the phenomena of advection-
diffusion-reaction in the saturated porous medium. The correspondent numerical solution is obtained by
the finite element method using the θ A-stable scheme and a Python code. The residual error estimator
considers its component parts and enables analysis and comparisons of contributions to residual error.
This analysis considers a problem sequence with a different number of elements in computational mesh.
As a result of numerical simulations, there is a dominance of the jump residuals compared to other resid-
ual estimates and this dominance increases with both, the growth of elements number in the computa-
tional mesh and with time. Furthermore, the considered problem requires additional effort for the calcu-
lation of contributions associated with the L2 projection of the contaminant source function on the finite
element space.

Keywords: residual error estimator, advection-diffusion-reaction equation, small advection regime, finite
elements, contaminant transport in porous media.

1 INTRODUCTION

Analytical solutions are far from encompassing the variety of phenomena present in contam-

inant transport and numerical methods are required to obtain an approximate solution of the
corresponding mathematical model. Moreover, the reliability of computational methods depends
on the discretization technique and the quality of the finite element mesh adopted. Although es-

timates of a priori are available, a posteriori estimates are fundamental for practical problems
involving finite element method [13]. Once the numerical result is obtained, the a posteriori
error estimator can be used to provide general or specific information about the quality of the

numerical solution [3].

*Paper presented at CMAC-SE 2013.
**Corresponding author: João Paulo Martins dos Santos
1Department of Hydraulics and Sanitary Engineering, EESC – USP, Av. Trabalhador Sancarlense, 400, 13566-590 São
Carlos, SP, Brazil. E-mails: jp2@usp.br; ew@sc.usp.br
2Air Force Academy. E-mail: alessandroafj@afa.aer.mil.br



�

�

“main” — 2014/5/30 — 11:11 — page 38 — #2
�

�

�

�

�

�

38 JUMP DOMINANCE ON THE CONTAMINANT TRANSPORT RESIDUAL ERROR ESTIMATOR

2 THE MODEL PROBLEM FOR THE CONTAMINANT TRANSPORT

The linear second order parabolic equation is used to describe the contaminant transport in a
domain � ⊂ R2, with general unknown concentration solution C = C(x, y, t), data functions

D, v, λ, f, g, C0 and final time t f inal is arbitrary, but is kept constant.

The data are real valued functions that may depend on space and time while the initial con-
dition depends only on space [17]. Here, the equation describes the phenomena of advection-
dispersion-reaction (ADR model) in a saturated porous media and, according to [1], can be pre-

sented by:

∂tC − div(D∇C) + v · ∇C + λC = f in � × (0, t f inal ]
C = 0 in �D × (0, t f inal ]

n · D∇C = g in �N × (0, t f inal ]
C = C0 in � for t = 0 (2.1)

where � ⊂ R2 is a polygonal cross-section with a Lipschitz boundary � consisting of two
disjoint parts �D and �N . The space dependent function C = C0 in � for t = 0 is the initial
condition while

C = CD in �D × (0, t f inal ] and n · D∇C = g in �N × (0, t f inal ]

are the Dirichlet and Neumann boundary conditions. Assuming that the data satisfy the addi-
tional conditions [20]:

P1 – The dispersion D = D(x, y, t) is a continuously differentiable matrix-valued function and
symmetric, uniformly positive definite and uniformly isotropic. Formally,

ε = inf
0≤t≤t f inal ,(x,y)∈�

min
R2−{0}

zT D(x, y, t)z

zT z
> 0, (2.2)

and

κ = ε−1 sup
0≤t≤t f inal ,(x,y)∈�

max
z∈R2−{0}

zT D(x, y, t)z

zT z
(2.3)

is moderate size constant.

P2 – The velocity v = v(x, y, t) = (vx (x, y, t), vy(x, y, t)) is a continuously differentiable
vector-field and scaled such that

sup
0≤t≤t f inal ,(x,y)∈�

|v(x, y, t)| ≤ 1.

P3 – The reaction λ = λ(x, y, t) is a continuous non-negative scalar function.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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P4 – There is a constant β such that λ − (1/2)div(v) ≥ β for almost all (x, y) ∈ � and 0 ≤
t ≤ t f inal . Moreover there is and a constant cb ≥ 0 of moderate size such that

sup
0≤t≤t f inal ,(x,y)∈�

|λ(x, y, t)| ≤ cbβ.

P5 – The Dirichlet boundary �D has positive measure (d − 1)-dimensional and includes the
inflow boundary ⋃

0<t≤t f inal

{(x, y) ∈ � : v · n(x, y) < 0}.

With these additional assumptions, the contaminant transport regime can be classified into:

• dominant dispersion:

sup
0≤t≤t f inal ,(x,y)∈�

|v(x, y, t)| ≤ ccε and β ≤ c,ε; (2.4)

with constants of moderate size;

• regime of dominant reaction:

sup
0≤t≤t f inal ,(x,y)∈�

|v(x, y, t)| ≤ ccε and β � ε; (2.5)

with a constant cc of moderate size;

• regime of dominant advection: cv � ε.

A detailed discussion of these elements can be found in D. Praetorius [17] which is an extension
of the results from Verfürth [20].

To derive the space-time discretization of (2.1), we consider a test function w ∈ H 1
D(�) where

H 1
D(�) denotes the subspace of the Sobolev space H 1(�) = W 1,2(�), with functions that vanish

on the Dirichlet boundary �D . Multiply equation (2.1) by a test function and use integration by
parts to derive the weak form∫

�

(∂t Cw + ∇C · D∇w + v · ∇Cw + λCw) d� =
∫

�

f wd� +
∫

�N

gwd S. (2.6)

Next, consider the partition I = {[tn−1, tn] : 1 � n � NI } of the time interval [0, t f inal ] such
that 0 = t0 < t1 . . . < tNI = t f inal .

For every n with 1 � n � NI denote by In = [tn−1, tn] the n-th subinterval and τn = tn − tn−1

its length.

With every intermediate time tn , 0 � n � NI associate an admissible, affine equivalent, shape
regular partition Tn of � and a corresponding finite element space Xn. In addition, the partitions
I and Tn and the spaces Xn must satisfy the following assumptions:

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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• � ∪ � is the union of all elements in Tn ;

• Affine equivalence, Admissibility and Shape-regularity;

• Non-degeneracy, transition condition and degree condition.

With a time discretization parameter θ ∈ [ 1
2 , 1] and the abbreviations Cn = C(x, y, tn), Dn =

D(x, y, tn), vn = v(x, y, tn), λn = λ(x, y, tn), f n = f (x, y, tn), gn = g(x, y, tn) the finite
element approximation with θ-A-stable-scheme is obtained by replacing the approximations in

the weak form of the parabolic problem and is given by

Find Cn ∈ Xn, 0 ≤ n ≤ NI , such that C0 = π0C0 and for n = 1, 2, ..., NI∫
�

1

τn
(Cn − Cn−1)wnd� +

∫
�

(θ∇Cn + (1 − θ)∇Cn−1) · Dn∇wnd�

+
∫

�

vn · ∇(θCn + (1 − θ)Cn−1 )wnd� +
∫

�

λn(θCn + (1 − θ)Cn−1 )wnd�

=
∫

�

f n + (1 − θ) f n−1wnd� +
∫

�N

(θgn + (1 − θ)gn−1)wnd S for all wn ∈ Xn.

(2.7)

where Cn = Cn
Tn

and wn = wTn .

In particular, θ = 1/2 gives the Crank-Nicolson scheme and θ = 1 gives implicit Euler scheme

[20]. Thus, finite element formulation (2.7) can be rewritten as a(Cn
n , wn) = L(wn). The term

a(Cn
n , wn) is called the bilinear form and is defined by expression (2.8)

a(Cn , wn) =
∫

�

1

τn
Cnwnd� +

∫
�

(θ∇Cn ) · Dn∇wnd�

+
∫

�

vn · ∇(θCn )wnd� +
∫

�

λn(θCn )wnd�

+
∫

�N

θgnwnd S,

(2.8)

while the term L(wn) is called linear form and defined by expression (2.9)

L(wn) =
∫

�

1

τn
Cn−1wnd� +

∫
�

((θ − 1)∇Cn−1) · Dn∇wnd�

+
∫

�

vn · ∇((θ − 1)Cn−1)wnd� +
∫

�

λn((θ − 1)Cn−1)wnd�

+
∫

�

(θ f n + (1 − θ) f n−1)wnd� +
∫

�N

(1 − θ)gn−1wnd S

(2.9)

Although variational formulation (2.7) is the key in finite element method, forms (2.8) and (2.9)
are essential for implementation using the FEniCS Project methodology [4]. These forms gener-
ate the linear system to be solved in each step of the simulation process. The solution in (n−1)-th

time step and the solution on the n-th time step are used to provide an error measure.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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A detailed description of the residual estimator and assumptions presented here are in references
[20, 19, 16, 17]. For finite elements method, a detailed discussion can be found in reference [2].

In the residual method, an element residuals RK is defined by:

RK = fI − 1

τn

(
Cn − Cn−1

) + div(Dn∇(θCn + (1 − θ)Cn−1))

− vn · ∇(θCn + (1 − θ)Cn−1) − λn(θCn + (1 − θ)Cn−1 )

(2.10)

while an edge or face residual RE is defined by:

RE =

⎧⎪⎨
⎪⎩

−JE (nE · Dn∇(θCn + (1 − θ)Cn−1 )) if E � �

gI − nE · Dn∇(θCn + (1 − θ)Cn−1 ) if E ⊂ �N

0 if E ⊂ �D

(2.11)

where J is the jump operator, fI (x, y, t) = πn(θ f (x, y, tn) + (1 − θ) f (x, y, tn−1)) and gI (x,

y, t) = πn(θg(x, y, tn) + (1 − θ)g(x, y, tn−1)) the projection functions on the finite element
space Xn [20]. According to Verfürth [20], if the transport regime is of small advection then the
residual estimator is given by equation (2.12)

η̂I =
{∣∣∣∣C0 − π0C0

∣∣∣∣2
L(�)

+
NI∑

n=1

τn

[(
ηn)2 + ∣∣∣∣∣∣Cn − Cn−1

∣∣∣∣∣∣2]}
1
2

(2.12)

where (
ηn

Tn

)2 =
∑

K

α2
K

∣∣∣∣RK
∣∣∣∣2

L2(K )
+

∑
E

ε− 1
2 αE

∣∣∣∣RE
∣∣∣∣2

L2(E )
, (2.13)

and ∣∣∣∣∣∣Cn − Cn−1
∣∣∣∣∣∣2 = ε

∣∣∣∣∇(Cn − Cn−1)
∣∣∣∣

L2(�)
+ β

∣∣∣∣Cn − Cn−1
∣∣∣∣

L2(�)
, (2.14)

with weighting factors αS = min{hSε− 1
2 , −β

1
2 }, where S = {K , E} is an element or an edge/

face and β− 1
2 = ∞ if β = 0.

3 IMPLEMENTATION

The Python numerical code considers the available methodology for the FEniCS Project. A
complete description of this project can be found in references [8, 9, 10, 11, 12, 14] or at
http://fenicsproject.org [4]. For graphical display of numerical solutions, Matplotlib/Scitools was
used [15, 18]. Using Python language, the contaminant transport equation is implemented using
the available tools from [4]. These tools provide conditions for setting the transport of contami-
nants directly through the use of bilinear and linear forms. Furthermore, mesh, initial conditions,
dispersions, velocity field, projections and boundary conditions are defined using the available
classes/tools described in documentation [4]. For example, mesh = Unit SquareMesh(nx , ny,

‘crossed ′) gives a mesh with nx , ny triangular elements in each coordinate direction and crossed
orientation. Reference [4] is a complete description of the available classes and tools.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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After the solution in the n-th step is obtained, the residual error estimates (2.13) are implemented

through the summation of the quantities defined in (2.10) and (2.11). Formally,(
ηn

Tn

)2 =
∑

K

α2
K

∣∣∣∣RK
∣∣∣∣2

L2(K )︸ ︷︷ ︸
ECn

+
∑
E��

ε− 1
2 αE

∣∣∣∣RE
∣∣∣∣2

L2(E )

︸ ︷︷ ︸
J Cn

+
∑

E⊆�N

ε− 1
2 αE

∣∣∣∣RE
∣∣∣∣2

L2(E )︸ ︷︷ ︸
BCn

. (3.1)

According to the designations adopted by Verfürth [20] and D. Praetorius [17], components
ECn , J Cn , BCn ,

∣∣∣∣∣∣Cn − Cn−1
∣∣∣∣∣∣2 will be called, respectively: element, jump, boundary and

time contributions for the n-th time step. These quantities allow us to rewrite equation (2.12)

as a sum of spatial and temporal contributions, obtained in each step, weighted by time step.
Formally,

η̂I =
{∣∣∣∣C0 − π0C0

∣∣∣∣2
L(�)

+
NI∑

n=1

τn(E Sn)2

} 1
2

. (3.2)

From equation (3.2), the amount (E Sn)2 = (ηn)2 + ∣∣∣∣∣∣Cn − Cn−1
∣∣∣∣∣∣2 may be regarded as the

residual error at each time step.

The code that implements the element, jump, boundary and time contributions follows an exam-
ple available in [6]. This allows the calculation of ηI and enables comparisons of components or
individual evaluation of contributions. This paper considers:

• Jump contribution versus element contribution Rn
J ump/Element , defined by

Rn
J ump/Element = J Cn

ECn
=

∑
E��

ε− 1
2 αE

∣∣∣∣RE
∣∣∣∣2

L2(E )

∑
K

α2
K

∣∣∣∣RK
∣∣∣∣2

L2(K )

(3.3)

which provides information on the magnitude of the jumps on the elements;

• Time contributions weighted by time time step, defined by τn
∣∣∣∣∣∣Cn − Cn−1

∣∣∣∣∣∣2 which

provides information on time residual error.

4 RESULTS AND DISCUSSION

With an adaptation of a problem described in [7] and [17], this paper implements the contam-
inant transport equation in a two-dimensional rectangular domain � defined by points x =
(x, y) ∈ R2. A spatial adaptation of that problem consider � defined by points (x0, y0) =
(0, 0), (x1, y0) = (80, 0), (x1, y1) = (80, 40) and (x0, y1) = (0, 40), inital condition C0 =
C(x, y, 0) = 0 and contaminant source f defined by

f (x, y, t) =
{

1 if 9.375 � x � 1.625, 19.375 � y � 20.625
0 otherwise

. (4.1)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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The physical parameters are the velocity field v = (vx , vy) = (0.864, 0)m
d , the dispersion

D = αDvx I2×2 with I2×2 the identity matrix of order two and αD = 0.05m the diffusivity.
Neumann boundary condition is defined, using bilinear and linear forms, by g = n · D∇C on
�N = {x1} × (y0, y1) while Dirichlet boundaries are defined, using the available class, by C = 0
on �D = ���N .

For all tn, 1 � n � NI , the numerical result of contaminant transport provides the distribution
function Cn ∈ R2, which describes the contaminant concentration at each point of �. Figure (1)
presents the numerical solution for t70 = 70days, τn = 1.0day, lagrangian functions of order
two, θ = 1.0 and finite element mesh with nx = 200 = 2ny triangular elements in each direction
and left/rigth orientation.

Figure 1: Numerical solution and level curves for t70 = 70days with τn = 1.0day, lagrangian

functions of order two, θ = 1.0 and finite element mesh with nx = 200 = 2ny triangular
elements in each direction and left/rigth orientation.

For residual estimates, the conditions P1-P5 were verified and contaminant transport was classi-
fied in advection dominated [17]. However, the regime is the small advection since Cc = v/ε is
a constant of moderate size [5].

The numerical simulations consider finite element meshes with nx = 2ny triangular elements in
each coordinate direction with left/right orientation, τn = 0.50, t f inal = 100.0days, θ = 1.0 and
lagrangian functions of order two. Figures (2)-a and (2)-b presents the results for temporal esti-
mates and for ratio Rn

J ump/Element for a sequence of problems with nx = [100, 200, 300, 400].
Numerical results provide that temporal residual decreases with time and as the number of el-
ements in mesh increases. On the other hand, Rn

J ump/Element increases with time and as the
number of elements in mesh increases. The increasing in Rn

J ump/Element with time is due to the
contaminant front advances, which, in turn, reflects in the dominance of jump contributions un-
der element contributions already in the coarse mesh. This dominance characterizes the jump
contributions as the most relevant part of ηI because τn

∣∣∣∣∣∣Cn − Cn−1
∣∣∣∣∣∣2 ≈ 0 and g = n · D∇C]

is, by definition, such that BCn = 0.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Figure 2: Temporal contributions τn
∣∣∣∣∣∣Cn − Cn−1

∣∣∣∣∣∣2 and the ratio Rn
J ump/Element = J Cn/ECn

for τn = 0.50, t f inal = 100days, θ = 1.0, lagrangian functions of order two, nx = 2ny =
[100, 200, 300, 400].

With the results, ηI can be approximated by

η̂I =
{∣∣∣∣C0 − π0C0

∣∣∣∣2
L�

+
NI∑

n=1

τn(E Sn)2

} 1
2

=
{ NI∑

n=1

τn(J Cn)2

} 1
2

(4.2)

where
∣∣∣∣C0 − π0C0

∣∣∣∣2
L(�)

= 0 and (E Sn)2 = (ηn)2 + ∣∣∣∣∣∣Cn − Cn−1
∣∣∣∣∣∣2 ≈ ECn + J Cn ≈ J Cn .

This results and the approximation for ηI reveals that jump error is not a negligible quantity and
complements the results obtained by Firmiano [5]. In fact the jump residual can be the most
important part of the residual estimates.

5 CONCLUSION

The presence of residual estimates enables an analysis of the numerical solution, which provides
information about the quality of the numerical results. Error estimator partition allows us to
analyze and compare the component parts of residual error. This provides a better understand-

ing of residual behavior for changing number of elements in mesh or time step. As a result of
simulations, jump dominance manifests for all adopted meshes, which is due to the advances
of contaminant front in the computational domain. As the number of finite elements increases,

the magnitude of dominance becomes more significant, making elements and temporal contribu-
tions negligible when compared to jump residual. This dominance shows that jump residual is a
important quantity in residual error estimator and can not be neglected.

RESUMO. Considerando o fato de que o transporte de contaminantes ocorre em regime

de pequena advecção, um estimador residual é usado para analisar a equação parabólica

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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que descreve o fenômeno de advecção-difusão-reação em meio poroso saturado. A solução

numérica correspondente é obtida pelo método de elementos finitos usando um esquema

θ A-estável em código Python. O estimador de erro residual avalia separadamente as partes

componentes do erro e permite a análise e comparação das contribuições para o erro residual.

Essa análise considera uma sequência de problemas com diferentes números de elementos na

malha computacional. As simulações numéricas indicam que o residual do salto é dominante

em comparação com outros resı́duos estimados e a dominância cresce com o número de ele-

mentos na malha e com o tempo. Adicionalmente, o problema considerado requer esforço

adicional para o cálculo das contribuições associadas com a projeção L2 da função fonte de

contaminante no espaço de elementos finitos.

Palavras-chave: estimador de erro residual, equação de advecção-difusão-reação, regime de

pequena advecção, elementos finitos, transporte de contaminantes em meios porosos.
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