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ABSTRACT. In this paper we discuss recent results regarding a generalization of the Laplacian. To be more
precise, fix a function W (x1, . . . , xd ) = ∑d

k=1 Wk(xk ), where each Wk : R → R is a right continuous
with left limits and strictly increasing function. Using W , we construct the generalized laplacian LW =∑d

i=1 ∂xi ∂Wi , where ∂Wi is a generalized differential operator induced by the function Wi . We present
results on spectral properties of LW , Sobolev spaces induced by LW (W -Sobolev spaces), generalized
partial differential equations, generalized stochastic differential equations and stochastic homogenization.
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1 INTRODUCTION

In the ’50s William Feller introduced a more general concept of differential operators, that is,
operators of the type (d/dW )(d/dV ) where, typically, W and V are strictly increasing functions
with V (but not necessarily W ) being continuous. In this paper we are interested in the formal

adjoint of (d/dW )(d/dV ), which is simply (d/dV )(d/dW ), in the case V (x) = x is the identity
function. For more details on Feller’s operators, we refer the reader to [4, 5, 9].

Recently, some attention has been raised to a class of generalized differential operator involving
the derivative with respect to a strictly increasing function W , we cite [2, 7, 6, 8, 9, 11, 12] as

some examples of this fact. On one hand, this operator can be naturally obtained from behavior
of some interacting particle systems with random conductances with the interesting feature that,
in contrast with usual homogenization phenomena, the entire noise survives in the limit and the
differential operator itself depends on the specific realization of random conductance [2, 7]. On

the other hand, a second surprising aspect is that the differential equation that appears in the limit
is a second-order differential operator in which one of the derivatives is a derivative with respect
to function W , which may have jumps. Even more, the set of jumps of W can be dense in R.
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132 RECENT RESULTS ON A GENERALIZATION OF THE LAPLACIAN

The goal of this paper is present an overview of the main recent results regarding this differen-
tial operator. The rest of the paper unfolds as follows: in Section 2 we present the generalized
Laplacian, which we denote by LW ; in Section 3 we construct the W -Sobolev spaces and present
several properties that are analogous to classical results on Sobolev spaces, we also present re-
sults on existence and uniqueness for W -generalized elliptic equations, and a uniqueness result
for W -generalized parabolic equations; in Section 4 we present stochastic homogenization re-
sults of suitable random operators ∇N AN ∇N

W , that are discretizations of the operator LW .

This paper is essencially inspired in works [11, 12, 3, 13].

2 THE OPERATOR LW

Fix a function W : Rd → R such that

W (x1, . . . , xd) =
d∑

k=1

Wk(xk ) (2.1)

where Wk : R → R are strictly increasing right continuous functions with left limits (càdlàg),
and periodic in the sense that

Wk(u + 1)− Wk(u) = Wk(1)− Wk(0)

for all u ∈ R and k = 1, . . . , d . To keep notation simple, we assume that Wk vanishes at the
origin, that is, Wk(0) = 0.

Denote by T the unidimensional torus and 〈·, ·〉 the inner product of L2(T):

〈 f, g〉 =
∫
T

f (u) g(u) du .

For each k = 1, 2, . . . , d let DWk be the set of functions f in L2(T) such that

f (x) = a + bWk(x) +
∫
(0,x]

Wk(dy)
∫ y

0
�(z) dz

for some function � in L2(T) such that∫ 1

0
�(z) dz = 0 ,

∫
(0,1]

Wk(dy)
{

b +
∫ y

0
�(z) dz

}
= 0

Define the operator LWk : DWk → L2(T) as LWk f = �. Formally,

LWk f = d

dx

d

dWk
f ,

where the generalized derivative d/dWk is defined as

d f

dWk
(x) = lim

ε→0

f (x + ε)− f (x)

Wk(x + ε)− Wk(x)
,

if the above limit exists and is finite.

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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SIMAS and VALENTIM 133

By a convenient restriction of the operators LWk to a dense subspaceDk ⊂ DWk , it is not difficult

to prove that LWk : Dk → L2(T) is symmetric and non-positive. Thus, by using Friedrichs
extension (see, for instance, [14, chapter 5]), one obtains that the extended operator, also denoted
by LWk , LWk : DWk → L2(T), is self-adjoint and, the setAWk of the eigenvectors of LWk forms

a complete orthonormal system in L2(T), the details of this approach can be found in [6].

Let

AW = { f : Td → R; f (x1, . . . , xd) =
d∏

k=1

fk (xk), fk ∈ AWk },

and define the operator LW : DW := span(AW ) → L2(Td) as follows: for f = ∏d
k=1 fk ∈

AW ,

LW ( f )(x1, . . . xd) =
d∑

k=1

d∏
j=1, j �=k

f j (x j )LWk fk (xk), (2.2)

and extend to DW by linearity. In particular, DW is dense in L2(Td); and the set AW forms a

complete, orthonormal, countable system of eigenvectors for the operator LW .

Let L2
xk⊗Wk

(Td) be the Hilbert space of measurable functions H : Td → R such that

∫
Td

d(xk ⊗ Wk) H (x)2 < ∞,

where d(xk ⊗ Wk) = dx1 · · ·dxk−1 dWk dxk+1 · · ·dxd .

Lemma 2.1. Let f, g ∈ DW , then for i = 1, . . . , d,∫
Td

(
∂xi ∂Wi f (x)

)
g(x) dx = −

∫
Td
(∂Wi f )(∂Wi g)d(xi ⊗ Wi).

In particular,

∫
Td
LW f (x)g(x) dx = −

d∑
i=1

∫
Td
(∂Wi f )(∂Wi g)d(xi ⊗ Wi).

that is, LW is symmetric and non-positive.

The proof consist in an application of Fubini’s theorem and an approximation of the integral by
Riemann sum. Informally,∫

T

(
∂xi ∂Wi f

)
gdxi = −

∫
T

(
∂Wi f

)(
∂xi g

)
dxi ≈ −

∑ � f

�Wi

�g

�xi
�xi

= −
∑ � f

�Wi

�g

�Wi
�Wi ≈ −

∫
T

(
∂Wi f

)(
∂Wi g

)
dWi

where the sum is over partitions of the torus T and �h stands for the increment of the function
h with respect to the partition. The details can be found in [13].

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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134 RECENT RESULTS ON A GENERALIZATION OF THE LAPLACIAN

Consider

DW = {v =
∞∑

k=1

vkhk ∈ L2(Td );
∞∑

k=1

v2
kα

2
k < +∞},

where hk ∈AW and αk is the eigenvalue associated to to eigenvector hk .

Define the operator LW : DW → L2(Td ) by

−LW v =
+∞∑
k=1

αkvkhk .

The operator LW is clearly an extension of the operator LW , and formally,

LW f =
d∑

k=1

LWk f

where
LWk f = ∂xk ∂Wk f,

and the partial generalized derivative ∂Wk is defined by

∂Wk f (x) = lim
ε→0

f (x1, . . . , xk + ε, . . . , xd)− f (x1, . . . , xk, . . . , xd)

Wk(xk + ε)− Wk(xk )
,

if the above limit exists and is finite. The following theorem gives us some properties of the
operator LW .

Theorem 2.2. The operator LW : DW → L2(Td ) enjoys the following properties:

i) The domain DW is dense in L2(Td ). In particular, the set of eigenvectors AW forms a
complete orthonormal system;

ii) The eigenvalues of the operator −LW form a countable set {αk}k≥0 . All eigenvalues have
finite multiplicity, and it is possible to obtain a re-enumeration {αk}k≥0 such that

0 = α0 ≤ α1 ≤ · · · and lim
n→∞ αn = ∞;

iii) The operator I− LW : DW → L2(Td) is bijective;

iv) LW : DW → L2(Td) is self-adjoint and non-positive:

〈−LW f, f 〉 ≥ 0;

v) LW is dissipative.

In view of i), iii) and iv) we may use Hille-Yosida theorem to conclude that LW is the generator
of a strongly continuous contraction semigroup {Pt : L2(Td ) → L2(Td) }t≥0.

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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We will now provide an outline of the proof. The details can be found in [13]. Since DW ⊂DW ,

we have that DW is dense in L2(Td ). The properties of the eingevalues follows from properties
of LWk and the definition of LW . From ii) we have that I− LW is injective. For v ∈ L2(Td), we
have that

v =
+∞∑
k=1

vkhk ∈ L2(Td) , where the vk are such that
∞∑

k=1

v2
k < +∞ .

Then,

u =
+∞∑
k=1

vk

γk
hk ∈ DW ,

and (I − LW )u = v. Hence I − LW is bijective.

Let L∗
W : DW∗ ⊂ L2(Td) → L2(Td) be the adjoint of LW . Since LW is symmetric, we have

DW ⊂ DW∗. So, to show that LW = L∗
W , it is enough to show that DW∗ ⊂ DW . Let ϕ =∑+∞

k=1 ϕkhk ∈ DW∗ be given, and let LW∗ϕ = ψ ∈ L2(Td ). Then, for all v = ∑+∞
k=1 vk hk ∈

DW ,

〈v, ψ〉 = 〈v,LW∗ϕ〉 = 〈LWv, ϕ〉 =
+∞∑
k=1

−αkvkϕk .

Hence ψ = ∑+∞
k=1 −αkϕkhk . In particular,

∑+∞
k=1 α

2
kϕ

2
k < +∞ and ϕ ∈ DW . Thus, LW is

self-adjoint. By ii) LW is non-positive.

Finally, fix a function g inDW , let λ > 0, and let also f = (λI − LW )g. So

λ〈g, g〉 + 〈−LW g, g〉 = 〈g, f 〉 ≤ 〈g, g〉1/2 〈 f, f 〉1/2 .

Using iv), the second term on the left hand side is non-negative. Thus, ‖λg‖ ≤ ‖ f ‖ = ‖(λI −
LW )g‖, that is, LW is dissipative.

3 W -SOBOLEV SPACE AND DIFFERENTIAL EQUATIONS

We construct the W -Sobolev spaces, which consist of functions f having weak generalized
gradients

∇W f = (∂W1 f, . . . , ∂Wd f ).

Several properties, that are analogous to classical results on Sobolev spaces, are obtained. Ex-
istence and uniqueness results for W-generalized elliptic equations, and uniqueness results for
W-generalized parabolic equations are also established. More details on these results can be

found in [11]

3.1 The definition and properties

Recall the definition of Hilbert space L2
xk⊗Wk

(Td ) given in Section 2.

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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136 RECENT RESULTS ON A GENERALIZATION OF THE LAPLACIAN

Let L2
xi⊗Wi ,0

(Td) be the closed subspace of L2
xi⊗Wi

(Td) consisting of the functions that have

zero mean with respect to the measure d(x j ⊗ W j ):∫
Td

f d(xi ⊗ Wi) = 0.

We define the Sobolev space of W -generalized derivatives as the space of functions g ∈ L2(Td)

such that for each i = 1, . . . , d there exists a fuction Gi ∈ L2
xi⊗Wi ,0

(Td) satisfying the following
integral by parts identity for every function f ∈ DW :∫

Td

(
∂xi ∂Wi f

)
g dx = −

∫
Td
(∂Wi f ) Gi d(x

i ⊗ Wi ). (3.1)

We denote this space by H1,W (T
d). For each function g ∈ H1,W we denote Gi by ∂Wi g, and we

call it the ith generalized weak derivative of the function g with respect to W .

In [11] it is shown that the set H1,W (T
d ) is a Hilbert space with respect to the inner product

〈 f, g〉1,W = 〈 f, g〉 +
d∑

i=1

∫
Td
(∂Wi f )(∂Wi g) d(xi ⊗ Wi), (3.2)

and we obtain the following properties:

Proposition 3.1. On the space H1,W (T
d ) we have

• (Poincaré’s Inequality) Let f ∈ H1,W (T
d ). Then, there exists a finite constant C such that∥∥∥∥ f −

∫
Td

f dx

∥∥∥∥
2

L2(Td )

≤ C
n∑

i=1

∫
Td

(
∂Wi f

)2
d(xi ⊗ Wi) := C‖∇W f ‖2

L2
W (T

d )
.

• (Rellich-Kondrachov’s embedding) The embedding H1,W (T
d) ⊂ L

2(Td) is compact.

• Denote by H−1
W (Td ) the dual space of H1,W (T

d). Thus f ∈ H−1
W (Td ) if and only if there

exist functions f0 ∈ L2(Td ), and fk ∈ L2
xk⊗Wk ,0

(Td ), such that

f = f0 −
d∑

i=1

∂xi fi , (3.3)

in the sense that for v ∈ H1,W (T
d)

( f, v) =
∫
Td

f0vdx +
d∑

i=1

∫
Td

fi (∂Wi v)d(x
i ⊗ Wi),

with (·, ·) being the dual pairing. Furthermore,

‖ f ‖H −1
W

= inf

⎧⎨
⎩
(∫

Td

d∑
i=0

| fi |2dx

)1/2

; f satisfies (3.3)

⎫⎬
⎭ .

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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3.2 The elliptic equations

In this subsection we investigate the solvability of uniformly elliptic generalized partial differen-
tial equations. Energy methods within Sobolev spaces are, essentially, the techniques exploited.

Let A = (aii (x))d×d , x ∈ Td , be a mensurable diagonal matrix function satisfying the ellipticity

condition, that is, there exists a constant θ > 0 satisfying

θ−1 ≤ aii (x) ≤ θ, (3.4)

for every x ∈ Td and i = 1, . . . , d . To keep notation simple, we write ai (x) to mean aii (x).

Our interest lies on solving the problem

Tλu = f, (3.5)

on u, where u : Td → R, and f : Td → R is given. Here Tλ denotes the generalized elliptic

operator

Tλu := λu − ∇ A∇W u := λu −
d∑

i=1

∂xi

(
ai (x)∂Wi u

)
. (3.6)

The bilinear form Bλ[·, ·] associated with the elliptic operator Tλ is given by

Bλ[u, v] = 〈u, v〉1,W = λ〈u, v〉 +
d∑

i=1

∫
ai(x)(∂Wi u)(∂Wi v) d(Wi ⊗ xi), (3.7)

where u, v ∈ H1,W (T
d).

Let f ∈ H−1
W (Td). A function u ∈ H1,W (T

d ) is said to be a weak solution of the equation

Tλu = f if
Bλ[u, v] = ( f, v) for all v ∈ H1,W (T

d ).

Denote by H⊥
1,W (T

d) be the set of functions in H1,W (T
d) which are orthogonal to the constant

functions:

H⊥
1,W (T

d) = { f ∈ H1,W (T
d);
∫
Td

f dx = 0}.

Proposition 3.2 (Energy estimates for λ = 0). Let B0 be the bilinear form on H1,W (T
d) defined

in (3.7) with λ = 0. There exist constants α > 0 and β > 0 such that for all u, v ∈ H1,W (T
d),

|B0[u, v]| ≤ α‖u‖1,W ‖v‖1,W

and for all u ∈ H⊥
1,W

B0[u, u] ≥ β‖u‖2
1,W .

The proof of this result follows from Poincaré’s inequality and (3.4).

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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Corollary 3.3. Let f ∈ L2(Td). There exists a weak solution u ∈ H1,W (T
d ) for the equation

∇ A∇W u = f (3.8)

if and only if ∫
Td

f dx = 0.

In this case, we have uniquenesses of the weak solutions if we disregard addition by constant
functions. Also, let u be the unique weak solution of (3.8) in H⊥

1,W (T
d), then

‖u‖1,W ≤ C‖ f ‖L2(Td ),

for some constant C independent of f .

To prove this result we begin by noting that, from Proposition 3.2, B satisfies the hypotheses

of the Lax-Milgram’s Theorem, [1, chapter 6]. This implies that there exists a weak solution
u ∈ H1,W (T

d) of (3.8). Since the function v ≡ 1 ∈ H1,W (T
d), and ∂Wi 1 = 0, we have from the

definition of weak solution that ∫
Td

f dx = B0[u, v] = 0.

Furthermore, the Proposition 3.2 also implies that there is a β > 0 such that

β‖u‖2
1,W ≤ B0[u, u] = 〈 f, u〉 ≤ ‖ f ‖L2(Td )‖u‖L2(Td ) ≤ ‖ f ‖L2(Td )‖u‖1,W . (3.9)

The existence of weak solutions and the bound C in the statement of the Corollary follows from
the previous expression.

Proposition 3.4 (Energy estimates for λ > 0). Let f ∈ L2(Td) and λ > 0. There exists a
unique weak solution u ∈ H1,W (T

d) for the equation

λu − ∇ A∇W u = f. (3.10)

This solution enjoys the following bounds

‖u‖1,W ≤ C‖ f ‖L2(Td )

for some constant C > 0 independent of f , and

‖u‖ ≤ λ−1‖ f ‖L2(Td ).

To obtain this result, note that an elementary computation shows that

|Bλ[u, v]| ≤ α‖u‖1,W ‖v‖1,W and Bλ[u, u] ≥ β‖u‖2
1,W ,

where β = min{λ, θ−1} > 0, α = max{λ, θ} < ∞ and θ is given in (3.4). The proof follows
from Lax-Milgram’s Theorem and an estimate similar to (3.9).

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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Observe that, for λ > 0, the operator λI − LA
W : DW → L2(Td ) is bijective. Therefore, the

equation
λu − ∇ A∇W u = f

has strong solution in DW if and only if f ∈ (λI − LA
W )(DW ), where I is the identity operator

and (λI − LA
W )(DW ) stands for the range of DW under the operator λI − LA

W . Moreover, this
strong solution coincides with the weak solution obtained in Proposition 3.4.

3.3 W -evolution equations

We study a class of W -generalized PDEs that evolves in time: the parabolic equations. We begin

by introducing the class of W -generalized parabolic equations we are interested. Then, we define
what is meant by weak solution of such equations using the W -Sobolev spaces.

Fix T > 0 and let (B, ‖ · ‖B) be a Banach space. We denote by L2([0, T ], B) the Banach space
of measurable functions U : [0, T ] → B such that

‖U‖2
L2([0,T ],B) :=

∫ T

0
‖Ut‖2

B dt < ∞.

Let A = A(t, x) be a diagonal matrix satisfying the ellipticity condition (3.4) for all t ∈ [0, T ],
and let � : [l, r] → R be a continuously differentiable function such that

B−1 < �′(x) < B,

for all x , where B > 0, l, r ∈ R are constants. We will consider the equation{
∂tu = ∇ A∇W�(u) in (0, T ] × Td ,

u = γ in {0} × Td .
(3.11)

where u : [0, T ] × T d → R is the unknown function, and γ : Td → R is given.

We say that a function ρ = ρ(t, x) is a weak solution of the problem (3.11) if:

• For every H ∈ DW the following integral identity holds:∫
Td
ρ(t, x)H (x)dx −

∫
Td
γ (x)H (x)dx =

∫ t

0

∫
Td
�(ρ(s, x))∇ A∇W H (x)dx ds

• �(ρ(·, ·)) and ρ(·, ·) belong to L2([0, T ], H1,W (T
d)):

∫ T

0
‖�(ρ(s, x))‖2

L2 (Td )
+ ‖∇W�(ρ(s, x))‖2

L2
W (T

d )
ds < ∞,

and ∫ T

0
‖ρ(s, x)‖2

L2(Td )
+ ‖∇Wρ(s, x)‖2

L2
W (T

d )
ds < ∞.

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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We define the energy in j th direction of a function u as

Q j (u) = sup
H∈DW

{
2
∫ T

0

∫
Td
(∂x j ∂W j H )(s, x) u(s, x)dx ds

−
∫ T

0
ds
∫
Td

[∂W j H (s, x)]2d(x j ⊗ W j )
}
,

and the total energy of a function u as

Q(u) =
d∑

j=1

Q j (u).

There is a connection between the functions of finite energy and functions in the Sobolev space
H1,W (T

d). In fact, from [11, Lemma 4.1], a function u ∈ L2([0, T ], L2(Td)) has finite energy

if and only if u belongs to L2([0, T ], H1,W (T
d)). In the case the energy is finite, we have

Q(u) =
∫ T

0
‖∇W u‖2

L2
W (T

d )
dt .

Moreover, we have uniqueness of weak solutions of the problem (3.11):

Lemma 3.5. Fix λ > 0, two density profiles γ 1, γ 2 : T → [l, r] and denote by ρ1, ρ2 weak
solutions of (3.11) with initial value γ 1, γ 2, respectively. Then,〈

ρ1
t − ρ2

t , ρ
1,λ
t − ρ

2,λ
t

〉
≤
〈
γ 1 − γ 2 , γ 1,λ − γ 2,λ

〉
eBλt/2

for all t > 0. In particular, there exists at most one weak solution of (3.11).

The proof can be found in [11].

4 HOMOGENIZATION OF RANDOM OPERATORS

In this section we describe stochastic homogenization results for the W -generalized elliptic dif-
ferential operator. This approach is closely related to the one considered in [10]. The focus of
this approach is to study the asymptotic behavior of effective coefficients for a family of random

difference schemes whose coefficients can be obtained by the discretization of random high-
contrast lattice structures. The study of homogenization is motivated by several applications in
mechanics, physics, chemistry and engineering. The details on this section can be found in [12].

4.1 Discrete approximation

Let TN be the one-dimensional discrete torus with N points:

TN = R/NZ � {0, 1, . . . , N − 1}.

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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Let, also, Td
N = TN × . . . × TN the d-dimensional discrete torus with Nd points. Let f :

1
N T

d
N → R be a function and define the difference operators:

∂N
x j

f (x/N) = N [ f ((x + e j )/N)− f (x/N)] and

∂N
W j

f (x/N) = f ((x + e j )/N)− f (x/N)

W j((x + e j )/N)− W j (x/N)
.

Consider ∇N
W f = (∂N

W1
f, . . . , ∂N

Wd
f ) and ∇N f = (∂N

x1
f, . . . , ∂N

xd
f ).

We introduce now three inner products:

〈 f, g〉N := 1

Nd

∑
x∈Td

N

f (x)g(x),

〈 f, g〉W j ,N := 1

Nd−1

∑
x∈Td

N

f (x)g(x)
(
W ((x + e j )/N)− W (x/N)

)
,

〈 f, g〉1,W,N := 〈 f, g〉N +
d∑

j=1

〈∂N
W j

f, ∂N
W j

g〉W j ,N ,

and its induced norms:

‖ f ‖2
L2(Td

N )
= 〈 f, f 〉N , ‖ f ‖2

L2
W j
(Td

N )
= 〈 f, f 〉W j ,N and ‖ f ‖2

H1,W (T
d
N )

= 〈 f, f 〉1,W,N .

These norms are natural discretizations of the norms introduced in the previous sections.

Let A = (ai j )n×n be a diagonal matrix and let T N
λ denote the discrete generalized elliptic opera-

tor

T N
λ u := λu − ∇N A∇N

W u, (4.1)

with

∇N A∇N
W u :=

d∑
i=1

∂N
xi

(
ai (x/N)∂N

Wi
u
)
.

The bilinear form B N [·, ·] associated with the elliptic operator T N
λ is given by

B N [u, v] = λ〈u, v〉N

+ 1

Nd−1

d∑
i=1

∑
x∈Td

N

ai(x/N)(∂N
Wi

u)(∂N
Wi
v)[Wi ((xi + 1)/N)− Wi (xi/N)], (4.2)

where u, v : N−1
T

d
N → R.

A function u : N−1
T

d
N → R is said to be a weak solution of the equation

T N
λ u = f,
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�

�

“main” — 2015/8/12 — 13:51 — page 142 — #12
�

�

�

�

�

�

142 RECENT RESULTS ON A GENERALIZATION OF THE LAPLACIAN

where u : N−1
T

d
N → R is the unknown function, and f : N−1

T
d
N → R is given, if

B N [u, v] = 〈 f, v〉N for all v : N−1
T

d
N → R.

We say that a function f : N−1
T

d
N → R belongs to the discrete space of functions orthogonal

to the constant functions H⊥
N (T

d
N ) if

1

Nd

∑
x∈Td

N

f (x/N) = 0.

Note that in the set of functions in Td
N we have a “Dirac measure” concentrated in a point x

as a function: the function that takes value Nd in x and zero elsewhere. Therefore, we may
integrate these weak solutions with respect to this function to obtain that every weak solution is,

in fact, a strong solution. Moreover, many properties of the Lebesgue’s measure also holds for
the normalized counting measure. In particular, many results stated in Section 3 can be formuled
and proved mutatis mutandis to this discrete setup.

Lemma 4.1. The equation
∇N A∇N

W u = f,

has a weak solution u : N−1
T

d
N → R if and only if

1

Nd

∑
x∈Td

N

f (x) = 0.

In this case we have uniqueness of the solution disregarding addition by constants. Moreover, if

u ∈ H⊥
N (T

d
N ) we have the bound

‖u‖H1,W (T
d
N )

≤ C‖ f ‖L2(Td
N )
, and ‖u‖L2(Td

N )
≤ λ−1‖ f ‖L2(Td

N )
,

where C > 0 does not depend on f nor N.

Lemma 4.2. Let λ > 0. There exists a unique weak solution u : N−1
T

d
N → R of the equation

λu − ∇N A∇N
W u = f. (4.3)

Moreover,
‖u‖H1,W (T

d
N )

≤ C‖ f ‖L2(Td
N )
, and ‖u‖L2(Td

N )
≤ λ−1‖ f ‖L2(Td

N )
,

where C > 0 does not depend neither on f nor N.

Note that if f ∈ L2(Td) in Lemma 4.2, and u is a weak solution of the problem (4.3), then

following bound holds:
‖u‖H1,W (T

d
N )

≤ C‖ f ‖L2(Td ),

since ‖ f ‖L2(Td
N )

→ ‖ f ‖L2(Td ) as N → ∞.
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4.2 Connections between the discrete and continuous Sobolev spaces

Given a function f ∈ H1,W (T
d ), we can define its restriction, fN , to the lattice N−1

T
d
N as

fN (x) = f (x) if x ∈ N−1
T

d
N .

However, given a function f : N−1
T

d
N → R it is not straightforward how to define an extension

belonging to H1,W (T
d). To do so, we need the definition of W -interpolation, which we give

below.

Let fN : N−1
TN → R and W : R → R, a strictly increasing right continuous function with left

limits (càdlàg), and periodic. The W -interpolation f ∗
N of fN is given by:

f ∗
N (x + t) := W ((x + 1)/N)− W ((x + t)/N)

W ((x + 1)/N)− W (x/N)
f (x)

+ W ((x + t)/N)− W (x/N)

W ((x + 1)/N)− W (x/N)
f (x + 1),

for 0 ≤ t < 1. Note that

∂ f ∗
N

∂W
(x + t) = f (x + 1)− f (x)

W ((x + 1)/N)− W (x/N)
= ∂N

W f (x).

Using the standard construction of d-dimensional linear interpolation, it is possible to define the
W -interpolation of a function fN : Td

N → R, with W (x) = ∑d
i=1 Wi(xi ) as defined in (2.1).

We now establish the connection between the discrete and continuous Sobolev spaces by showing
how a sequence of functions defined in Td

N can converge to a function in H1,W (T
d ).

We say that a family fN ∈ L2(Td
N ) converges strongly (resp. weakly) to the function f ∈ L2(Td)

as N → ∞, if f ∗
N converges strongly (resp. weakly) to the function f . From now on we will

omit the symbol “ ∗ ” in the W -interpolated function, and denote them simply by fN .

The convergence in H−1
W (Td) can be defined in terms of duality. Namely, we say that a functional

fN on Td
N converges to f ∈ H−1

W (Td) weakly (resp. strongly) if for any sequence of functions

uN : Td
N → R and u ∈ H1,W (T

d ) such that uN → u weakly (resp. strongly) in H1,W (T
d ), we

have
( fN , uN )N −→ ( f, u), as N → ∞.

4.3 Random environment

In this subsection we introduce the statistically homogeneous rapidly oscillating coefficients that

will be used to define the random W -generalized difference elliptic operators.

Let (�,F, μ) be a standard probability space and {Tx : � → �; x ∈ Z
d} be a group of F-

measurable and ergodic transformations which preserve the measure μ:

• Tx : � → � is F-measurable for all x ∈ Zd ,
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• μ(Tx A) = μ(A), for any A ∈ F and x ∈ Zd ,

• T0 = I , Tx ◦ Ty = Tx+y ,

• For any f ∈ L1(�) such that f (Txω) = f (ω) μ-a.s for each x ∈ Z
d , is equal to a

constant μ-a.s.

Note that the last condition implies that the group Tx is ergodic. Let us now introduce the vector-
valued F-measurable functions {a j (ω); j = 1, . . . , d} such that there exists θ > 0 with

θ−1 ≤ a j (w) ≤ θ,

for all ω ∈ � and j = 1, . . . , d . Then, define the diagonal matrices AN whose elements are
given by

aN
j j(x) := aN

j = a j(TNxω) , x ∈ T d
N , j = 1, . . . , d. (4.4)

Let λ > 0, and let fN be a functional on the space of functions hN : Td
N → R, f ∈ H−1

W (Td ).
Let, also, uN be the unique weak solution of

λuN − ∇N AN ∇N
W uN = fN ,

and u0 be the unique weak solution of

λu0 − ∇ A∇W u0 = f. (4.5)

We say that the diagonal matrix A is a homogenization of the sequence of random matrices AN

if the following conditions hold:

• For each sequence fN → f in H−1
W (Td ), uN converges weakly in H1,W to u0, when

N → ∞;

• aN
i ∂

N
Wi

uN → ai∂Wi u, weakly in L2
xi⊗Wi

(Td) when N → ∞.

The following homogenization theorem is proved in [12]:

Theorem 4.3. Let AN be a sequence of ergodic random matrices, such as the one that defines
our random environment. Then, almost surely, AN (ω) admits a homogenization, where the ho-
mogenized matrix A does not depend on the realization ω.

Note that if u ∈ DW is a strong solution (or weak) of

λu − ∇ A∇W u = f

and uN is strong solution of the discrete problem

λuN − ∇N AN ∇N
W uN = f

then, the homogenization theorem also holds, that is, uN also converges weakly in H1,W to u.
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RESUMO. Neste artigo discutimos recentes resultados sobre uma generalização do Lapla-

ciano. Mais precisamente, fixe uma função W (x1, . . . , xd ) = ∑d
k=1 Wk(xk ), onde cada

Wk : R → R é uma função contı́nua á direita com limites a esquerda e estritamente cres-

cente. Usando W , construı́mos o laplaciano generalizado LW = ∑d
i=1 ∂xi ∂Wi , onde ∂Wi

denota o operador diferencial induzido por Wi . Apresentamos resultados sobre propriedades

espectrais de LW , espaços de Sobolev induzidos por LW (espaços W -Sobolev), equações

diferenciais parciais generalizadas, equações diferenciais estocásticas e homogeinização es-

tocástica.

Palavras-chave: Espaços W -Sobolev, Laplaciano generalizado, Homogeinização, Equações

diferenciais parciais.
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[8] J.-U. Löbus. Generalized second order differential operators. Math. Nachr., 152 (1991), 229–245.

[9] P. Mandl. Analytical treatment of one-dimensional Markov processes. Grundlehren der mathematis-

chen Wissenschaften, 151. Springer-Verlag, Berlin (1968).

[10] A. Piatnitski & E. Remy. Homogenization of Elliptic Difference Operators. SIAM J. Math. Anal.,

33 (2001), 53–83.

[11] A.B. Simas & F.J. Valentim. W -Sobolev spaces. Journal of Mathematical Analysis and Applications,

382(1) (2011), 214–230.

[12] A.B. Simas & F.J. Valentim. Homogenization of second-order generalized elliptic operators, submit-
ted for publication.

[13] F.J. Valentim. Hydrodynamic limit of a d-dimensional exclusion process with conductances. Ann.

Inst. H. Poincaré Probab. Statist., 48(1) (2012), 188–211.

[14] E. Zeidler. Applied Functional Analysis. Applications to Mathematical Physics. Applied Mathemati-

cal Sciences, 108. Springer-Verlag, New York (1995).

Tend. Mat. Apl. Comput., 16, N. 2 (2015)


