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ABSTRACT. Focus, in the past four decades, has been obtaining closed-form expressions for the no-
arbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the
underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for
the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic
of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas
recover the Black and Scholes results, which suggests minimum computational effort. We introduce a novel
concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a
strategy). The notion that is found in the literature is different and looses the correct physical interpretation.
The measure serves aiding the practitioner to adjust the number of rebalances during the option’s lifetime.

Keywords: barrier option, no-arbitrage pricing, hedging, Martingale measure, time-change for Martin-
gales.

1 INTRODUCTION

Under arbitrage-free assumptions, Black & Scholes [1] and Merton [17] pioneered the achieve-
ments on pricing and hedging derivatives in financial markets. They considered an European call
option and a market with one bond and one stock where the parameters in the dynamics that

model the market have constant values. By its turn, Harrison & Pliska [4] – among others –
showed that, essentially, there is an equivalence between absence of arbitrage opportunities and
the existence of an equivalent measure that renders the discounted underlying stock a martin-
gale: under this measure, pricing a derivative is allowed to be naively obtained, in that average is

applied to the discounted payoff, conditional to the present information.

Underpinned by these seminal results, significative advances followed in obtaining closed-form
expressions for the exact prices and hedges of options, as can be verified, for instance, in the
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62 EXACT BARRIER OPTION VALUATION

works of Heston [5] addressing the Ornstein-Uhlembeck format for stochastic volatility, Cox &
Ross [2] focusing CEV (constant elasticity of variance) models, and Lo et al. [15] for CEV with
deterministic time-dependent coefficients. The case of pure deterministic time-dependent coeffi-
cients are direct extensions of [1] (see, e.g., [12]). But the results and techniques do not replicate
if entering with more sophisticated derivatives as path dependent options, particularly barrier
options. Indeed, achievements in terms of closed-form pricing formulas are more restricted in
this case.

Barrier options are standard European options which involve a barrier constraint tailored for a
certain behavior of the underlying asset along the option’s lifetime. If this behavior is what the
investor thinks will happen, then he may pay less buying the barrier option instead of its standard
counterpart (the European option), obtaining the same result whenever his beliefs meet reality.
Otherwise the option’s payoff cancels (see, e.g., [3, 12]). Barrier options have been present for
more than two decades in the foreign exchange, equity and commodity markets and became very
popular in recent years.

Merton [17] derived a closed-form solution for the price of a down-and-out European call option
with constant barrier. Explicit solutions for arbitrage-free prices of some other types of barrier
options are found in the work of Rubinstein & Reiner [20]. Rich [18] derived closed-form solu-
tions for European barrier options with a fixed rebate and constant barrier, as well as exponential
barriers with constant time coefficient on the exponent. Heynen & Kat [6, 7] derived closed-form
pricing formulas for partial barrier options, and analytic valuation formulas for outside barrier
options as well. Via a modified version of the method of images, Kwok et al. [11] extended
this scope allowing more than one underlying asset and barriers that can be constant or expo-
nential with a constant time coefficient. Kolkiewicz [9] addressed several types of double-barrier
options where an infinite series representation for the price is given. Relying on the hitting prob-
abilities of a Brownian motion technique, closed-form expressions for European style double
barrier options are also encountered in [16]. Using probabilistic techniques, Kunitomo & Ikeda
[10] evaluated options contracts monitored by two knock-out barriers with exponential format,
whose valuation formulas are given in terms of an infinite series representation. The works above
assume that the market model has constant parameters. Allowing the parameters in the dynamics
to be deterministic functions of time, Roberts & Shortland [19] explicitly derived approximation
formulas for the prices of barrier options by means of estimating the boundary crossing times of
the asset price and the technique of hazard rate tangent approximations. Lo et al. [13], via the
method of images, obtained estimates of prices of barrier options with generic (square integrable)
trajectories. The estimates stem from a parameterized class of trajectories which spontaneously
arises from the technique and for which the prices are exact. Considering the CEV models with
time-dependent coefficients, Lo et al. [14] also obtained estimates for the prices of barrier op-
tions with generic trajectories, brought out by a parameterized class of trajectories for which the
prices are exact.

In this note, we present closed-form expressions for the exact price and hedging strategy of an
up-and-out call option with a constant barrier B. The barrier tests whether the price S(u) of the
risky asset – which evolves according to the stochastic differential equation

d S(u) = μ(u)S(u)du + σ(u)S(u)dW (u) (1.1)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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– agrees with S(u) ≤ B ∀u ∈ [0, T ]. In the above expression the mean rate of return (drift) μ

and the volatility σ are arbitrary deterministic functions of time subject to the mild constraint of
square integrability (jumps are allowed, for instance). W is a standard Brownian Motion and T
is the expiration time. We assume the riskless interest rate r = 0.

We justify modeling the market via a deterministic time dependent volatility noticing the fol-
lowing. Market’s forecasts stem primarily from practitioners’ believes and intuition, which in
turn lead to deterministic scenarios. Substantiated by these scenarios, practitioners become more
confident to choose strategies and formulate derivatives. Whence, modeling the market via de-
terministic time dependent parameters is a worthy guiding reference.

It is noteworthy that the version of the problem treated herein with a non-zero riskless interest
rate does not allow closed-form expressions. We also note that the prices herein serve as a worst
case benchmark to [14] set to a constant value barrier; this is so since the function that spans the
parameterized class of exactly priced barriers there approaches zero as the CEV model with time
dependent coefficient tends to the pure time dependent model.

To the best of the authors knowledge, the work in this note is not present in the literature; in
particular, the constant value barrier is neither in the core of the exactly priced barriers options
of [14] (for which our dynamics is a limiting case), nor that of [13].

In terms of simulations, we consider hedging a short position via a strategy that creates a long
position in the option synthetically by buying or selling shares of the asset a number of times
per day. We introduce a novel concept of relative standard deviation for measuring correctly
the exposure of the practitioner to risk (enforced by the strategy), or else, the efficiency of risk
absorbtion assigned to the strategy. The notion that is present in the literature and that is exploited
in the financial industry is different and looses the correct physical interpretation. The measure
serves aiding the practitioner to adjust the number of rebalances during the option’s lifetime.

2 PRICING AND HEDGING RESULTS

We consider a probability space (�,F, P̃) where P̃ is the risk-neutral probability for the market
described in Section 1. Under P̃, the price of the underlying risky asset evolves according to the
stochastic differential equation

d S(u) = σ(u)S(u)dW̃ (u) (2.1)

and the initial price value S(0). W̃ (u), 0 ≤ u ≤ T , is a standard Brownian Motion and the
volatility σ(u) is an arbitrary square integrable deterministic function of time. The barrier’s
payoff we are interested in reads

H (T ) = (S(T ) − K )+I{S(u)≤B ∀ u∈[0,T ]}, (2.2)

where K is the strike price and 0 < K < B.

At time t ∈ [0, T ] arbitrarily fixed, the no-arbitrage price for this option is (see, e.g., [4], [21])

H (t) = Ẽ [H (T ) | F(t)] , (2.3)

with F(t) ⊂ F , 0 ≤ t ≤ T , denoting the filtration generated by W .

Tend. Mat. Apl. Comput., 16, N. 1 (2015)



�

�

“main” — 2015/4/27 — 11:00 — page 64 — #4
�

�

�

�

�

�

64 EXACT BARRIER OPTION VALUATION

In order to deal with a zero-origin starting point, define σt(u) = σ(t + u), St(u) = S(t + u) and

the standard Brownian Motion W̃t (u) = W̃ (t + u) − W̃ (t), 0 ≤ u ≤ T − t . Thus, from (2.1),

d St(u) = σt (u)St (u)dW̃t (u), (2.4)

where the initial price value is St(0) = S(t). So, the risky asset price process St(u) is a martingale
which reads St(u) = S(t) exp{ Ît (u)}, where

Ît (u) =
∫ u

0
σt (s)dW̃t (s) − 1

2

∫ u

0
σ 2

t (s)ds, 0 ≤ u ≤ T − t . (2.5)

Also define

M̂t = max
0≤u≤T−t

Ît (u), so that max
0≤u≤T −t

St(u) = S(t) exp{M̂t }. (2.6)

Moreover, (2.6) allows us to write

{S(u) ≤ B ∀u ∈ [t, T ]} = {St(u) ≤ B ∀u ∈ [0, T − t ]}

=
{

max
0≤u≤T−t

St(u) ≤ B

}
=

{
S(t) exp

{
M̂t

}
≤ B

}
,

so the payoff H (T ) reads

H (T ) =
(

S(t) exp{ Ît (T − t)} − K
)

I{
Ît (T−t)≥k(t), M̂t ≤b(t)

}, (2.7)

with k(t) = ln
(

K
S(t)

)
and b(t) = ln

(
B

S(t)

)
.

Lemma 2.1 gives the joint density function for calculating (2.3).

Lemma 2.1. Under P̃, the joint density function of the pair of random variables
(

M̂t , Ît(T − t)
)

is

f̃ M̂t ,Ît (T−t)(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2(2x − y)

h(t)
√

2πh(t)
exp

{
−1

2
y − 1

8
h(t) − (2x − y)2

2h(t)

}
, y ≤ x, x > 0

0, otherwise

, (2.8)

where h(t) = ∫ T
t σ 2(u)du.

Proof. Underpinned by Girsanov’s Theorem, we obtain the joint density function for
(
M̂t ,

Ît (T − t)
)

under an auxiliary measure P̂ which renders the process Ît (u) given by (2.5) a contin-
uous martingale, namely,

Ît (u) =
∫ u

0
σt (s)dŴ (s), 0 ≤ u ≤ T − t, (2.9)

where

Ŵ (u) = W̃t(u) − 1

2

∫ u

0
σt (s)ds, (2.10)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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is a Brownian Motion under P̂. Indeed, defining

Zt(u) = exp

{∫ u

0

σt (s)

2
dW̃t(s) − 1

2

∫ u

0

σ 2
t (s)

4
ds

}
, 0 ≤ u ≤ T − t, (2.11)

and relying on the square integrability of σ(u), we have that Zt (u) is a Radon-Nikodým deriva-
tive process and

P̂(A) =
∫

A
Zt(T − t)dP̃, A ∈ F (2.12)

defines a new measure under which Ŵ is a standard Brownian Motion, so that Ît is a continuous
martingale under P̂. Now, relying on the Time-Change for Martingales Theorem (see, e.g. [8]),
we may further express Ît as

Ît (u) = W (ht (u)) , 0 ≤ u ≤ T − t, (2.13)

where W is a Brownian Motion under P̂, and

ht (u) = [
Ît , Ît

]
(u) =

∫ u

0
σ 2

t (s)ds (2.14)

is the quadratic variation of Ît (u). Moreover, since ht (u) is continuous and increasing, it follows
from (2.6) that

M̂t = max
0≤s≤ht(T−t)

W (s). (2.15)

Since σt (u) is deterministic, and relying on (2.13), (2.15) and on the Reflection Principle for

Brownian Motion, we have, for y ≤ x and x > 0, that

P̂
{

M̂t ≥ x, Ît (T − t) ≤ y
}

= P̂
{

Ît (T − t) ≥ 2x − y
}

, y ≤ x, x > 0, (2.16)

which stands for a version of the Reflection Principle for Brownian Motion extended for Cont-
inuous-time Martingales with Deterministic Quadratic Variation – in this case given by (2.14).

Differentiating (2.16) with respect to x and y, we obtain the joint density function of the pair(
M̂t , Ît (T − t)

)
under the auxiliary measure P̂, given by

f̂M̂t ,Ît (T−t)(x, y) = 2(2x − y)

ht (T − t)
√

2πht(T − t)
exp

{
−(2x − y)2

2ht(T − t)

}
, y ≤ x, x > 0, (2.17)

where we used the fact that Ît (T − t) is normally distributed with zero mean and variance
ht (T − t). By its turn, (2.5), (2.10), (2.11) and (2.14) gives us that

Zt(T − t) = exp

{
1

2
Ît (T − t) + 1

8
ht (T − t)

}
,

so that

P̃
{

M̂t ≤ x, Ît (T − t) ≤ y
}

= Ê

[
1

Zt (T − t)
I{M̂t ≤x,Ît (T−t)≤y}

]

=
∫ y

−∞

∫ x

−∞
exp

{
−1

2
v − 1

8
ht (T − t)

}
f̂M̂t ,Ît (T−t)(w, v) dw dv.

(2.18)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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Noticing that h(t) = ht (T − t) and reminding (2.17), the result follows differentiating (2.18)

with respect to y and x . �

The pricing and hedging result is the content of the following theorem.

Theorem 2.1. Consider an up-and-out call option with strike price K , time of expiration T > 0
and a constant barrier B such that 0 < K < B. Also assume that the volatility σ(t) that enters
in the dynamic of the risky asset is an arbitrary square integrable deterministic function of time

and the interest rate of the riskless asset is zero. If the option has not knocked out prior to time
t ∈ [0, T ), then the no-arbitrage price H (t) and hedge �(t) of this option are given by

H (t) = S(t)[N(z+
t ,a) − N(z+

t ,b)] − K [N(z−
t ,a) − N(z−

t ,b)]
− B[N(z+

t ,c) − N(z+
t ,d)] + K b · [N(z−

t ,c) − N(z−
t ,d)],

(2.19)

and

�(t) = [N(z+
t ,a) − N(z+

t ,b)] + q[N(z−
t ,c) − N(z−

t ,d)] + h(t)−1/2{[−N ′(z+
t ,b)

+ a−1N ′(z−
t ,b)] + d[N ′(z+

t ,c) − N ′(z+
t ,d)] − q[N ′(z−

t ,c) − N ′(z−
t ,d)]}.

(2.20)

In the above equations, S(t) is the price of the risky asset observed at time t , a = S(t)/K ,
b = S(t)/B, c = B2/K S(t), d = B/S(t), q = K/B,

h(t) =
∫ T

t
σ 2(u)du, z±

t ,s = 1√
h(t)

[
ln s ± 1

2
h(t)

]
,

N(z) = 1√
2π

∫ z

−∞
e
− y2

2 dy and N ′(z) = 1√
2π

e
− z2

2 .

Proof. Bearing in mind that S(t) is F(t)-measurable and Ît (T − t) and M̂t are independent of
F(t), it follows, from (2.3) and (2.7), that

H (t) = Ẽ

[(
S(t) exp{ Ît (T − t)} − K

)
I{

Ît (T−t)≥k(t), M̂t ≤b(t)
} | F(t)

]

=
∫ b(t)

k(t)

∫ b(t)

y+

(
S(t)ey − K

)
f̃M̂t ,Ît (T−t)(x, y) dx dy,

(2.21)

where f̃M̂t ,Ît (T−t) is given by (2.8) and y+ = max{y, 0}. The pricing formula (2.19) follows

after some algebraic manipulation, while the derivative of this price with respect to the risky
asset price leads us to the hedging strategy formula. �

Setting the volatility a constant recovers verbatim the classical barrier pricing and hedging for-
mulas with r = 0; letting, in addition, the barrier go to infinity recovers the Black and Scholes
classical result for an European call option.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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3 SIMULATIONS

The numerical results in this section were generated via the Monte Carlo Method in conjunction
with the the Antithethic Variates Method. One million simulations were performed. We consider

hedging a short position in an up-and-out call option with T = 20 days, S(0) = 100, K = 96,
and a barrier B = 110. The term structure of the volatility that we arbitrarily chose exhibits a
jump at time T/2. More explicitly,

σ1(t) =
{

0.5 , 0 ≤ t ≤ T/2
0.24 − t , T/2 < t ≤ T .

(3.1)

For the sake of simplicity we set a constant value for μ, namely, μ = 10%.

With the aim of hedging the short position, we consider a strategy that creates a long position in

the option synthetically by buying or selling a certain quantity of shares given by the difference
between the actual and the previous delta values (which stems from the theoretical calculations).
Table 1 illustrates one realization of this delta hedging scheme considering a contract of one

option. The hedging scheme performs three times per day, with the option being knocked out
on the first rebalance (adjustment) of the fourth day. The asset price evolves as in column 1.
Column 3 stems from column 2 and shows the buying or selling strategy. The cost of shares

purchased (no transactions costs were assumed), as in column 4, creates a debt/credit in a bank
account (col. 5). The theoretical option prices (col. 7) and delta values (col. 2) are computed
via (2.19) and (2.20) respectively. We may note that the value of the delta-derived replicating

portfolio (col. 6) tracks very well the option prices (col. 7).

Table 1: One realization of the delta hedging strategy (the barrier is breached

on the first rebalance of the fourth day).

Asset
Delta

Shares
Cost Bank Portfolio

Option

price purchased price

1 2 3 4 5 6 7

102.598 –0.109 –0.069 –7.057 –12.540 1.374 1.330

102.637 –0.112 –0.003 –0.300 –12.840 1.370 1.372

102.544 –0.111 0.001 0.083 –12.757 1.380 1.432

105.763 –0.199 –0.088 –9.325 –22.082 1.023 0.974

104.783 –0.182 0.017 1.777 –20.305 1.218 1.205

104.775 –0.188 –0.006 –0.613 –20.917 1.220 1.258

106.538 –0.241 –0.053 –5.692 –26.609 0.888 0.925

106.826 –0.258 –0.017 –1.804 –28.414 0.819 0.895

109.586 –0.308 –0.049 –5.395 –33.809 0.106 0.127

111.663 –0.313 –0.005 –0.602 –34.411 –0.533 –0.533

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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A novel definition of relative standard deviation of the hedging cost, which we denote σrel ,

is established. It measures correctly the exposure of the practitioner to risk (enforced by the
strategy), or else, the efficiency of risk absorbtion assigned to the strategy. The measure serves
aiding the practitioner to adjust the number of rebalances during the option’s lifetime. Curiously,

the notion that is present in the literature is different and looses the correct physical interpretation.
Hence, we set

σrel = σdelta

σno
, (3.2)

where σdelta = E[(PT̄ − HT̄ )2], σno = E[H0 − HT̄ )2], PT̄ is the value of the delta hedging
portfolio (which depends on the number of rebalances per day) and T̄ is either the expiration

or the knock out time. Whence, σdelta assigns the standard deviation of the hedge cost of the
delta hedging strategy and σno that of a strategy which is the nearest thing from doing nothing.
Indeed, the “no” strategy is characterized by the fact that the short seller hedges his position with

the portfolio valued at H0 totally invested in the money market account and do nothing more. In
this case, a hedge per se does not exist in fact, as the dealer assumes 100% of the risk to settle
his liability. So, σrel expresses the proportion of risk that must be assumed by the practitioner to

that absorbed by the delta hedging strategy (the text ahead illustrates the matter). The expression
σdelta

H0
– usually found in the literature – does not provide such physical argument.

Remark. The mean value of PT̄ − HT̄ and H0 − HT̄ are sufficiently small – as they should be
– so they are disregarded in (3.2).

Table 2 gives the relative standard deviations, the kurtosis and the asymmetry of hedge costs

parameterized by the number of daily rebalances.

Table 2: Numerical results.

Rebalances
σrel σdelta σno

Hedging
Curtosis Asymmetry

per day cost

1 0.43 1.125 0.382 0.0103 5.134 0.067

3 0.27 0.660 0.409 0.0022 7.903 0.017

6 0.20 0.474 0.422 0.0012 10.924 0.009

9 0.17 0.388 0.438 0.0013 14.361 0.103

12 0.15 0.338 0.444 0.0006 16.455 0.097

Column 2 tells us that, performing three rebalances per day, the delta hedging strategy absorbs
(or eliminates) 73% of the risk, while the practitioner remains exposed to (or must assume) 27%

of the risk. This exposure reduces to 20% (i.e., the strategy copes with 80% of the risk) in the case
of 6 rebalances per day, and is augmented to 43% (which means an elimination of 57% of the
risk) in the case of 1 rebalance per day. Note that the “no” strategy is not sensitive to the changes

of the number of rebalances per day – which is indeed consistent with the strategy (col. 4).

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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In periods of stability, the volatility will be small, so the values of σrel will decrease accordingly,

in which case, one rebalance per day or less would suffice. We note that the hedging cost, which
assigns the gains/losses average in the long run, is almost zero, as it should be. We also notice
that the kurtosis is greater than 3 and the asymmetry is small, for all rebalancing schemes.

4 CONCLUSION

Via the risk neutral pricing technique (no PDEs were involved), we have obtained closed-form

expressions for the exact prices and hedges of an up-and-out call option with a constant barrier.
We have assumed an arbitrary square integrable deterministic function of time to model the
volatility and a zero interest rate for the riskless asset. This model is consistent with the fact that,

in practice, traders often work with some devised deterministic behaviors for the volatility, as a
guidance for their decision-making. It is noteworthy that the standard (constant) barrier option
associated with this model does not allow closed-form expressions.

The formulas provided recover verbatim standard results as particular cases, indicating that these

are ready-to-use formulas leading to a minimum computational effort. Also, the results of the
simulations were very good. The delta-derived replicating portfolio tracked very well the option
prices. Underpinned by the novel definition of relative standard deviation, we established cor-
rectly the proportion of risk assumed by the practitioner to that absorbed by the delta hedging

strategy, as a function of the number of rebalances per day.

RESUMO. As quatro últimas décadas registraram um considerável esforço de pesquisa na

obtenção de formas fechadas para os preços livres de arbitragem de versões modificadas de

opções européias assim como para as estratégias associadas, permitindo-se também que a

dinâmica do ativo de risco subjacente exibisse parâmetros não necessariamente constantes.

Nesse trabalho obtemos a forma fechada do preço e da estratégia associada considerando uma

opção com barreira up-and-out com volatilidade representada por funções determinı́sticas

arbitrárias. Particularizando-se a volatilidade para o caso constante, as expressões resgatam as

fórmulas de Black & Scholes. Este fato sugere que o tempo de processamento computacional

seja mı́nimo. Introduzimos também um novo critério de desvio padrão relativo para aferição

da exposição do agente financeiro ao risco (induzido pela estratégia), posto que o critério

usual encontrado na literatura não traz uma correta interpretação fı́sica. A nova medida vem

orientar o agente financeiro no ajuste do número de intervenções no porfolio até a expiração

da opção.

Palavras-chave: opção com barreira, preços livres de arbitragem, medida Martingale,

mudança de escala.
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