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Abstract. In this paper, we introduced new construction techniques of BCH,
alternant, Goppa, Srivastava codes through the semigroup ring B[X; 1

3
Z0] instead

of the polynomial ring B[X;Z0], where B is a finite commutative ring with identity,
and for these constructions we improve the several results of [1]. After this, we
present a decoding principle for BCH, alternant and Goppa codes which is based
on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to
the Hamming weight t ≤ r/2, i.e., whose minimum Hamming distance is r + 1.
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code.

1. Introduction

Having the construction of codes over rings as the main motivation for the linear
codes, and in particular of BCH, alternant, Goppa and Srivastava codes, in this
paper we address the constructions these codes over semigroup rings. In [1] Andrade
and Palazzo discussed the BCH, alternant, Goppa and Srivastava codes through
the polynomial ring B[X ;Z0], where B is finite commutative ring with identity and
Z0 = Z

+ ∪ {0}. In [2] T. Shah et. al. considered linear codes over the semigroup
ring B[X ; 12Z0]/(X

n − 1). In this paper, we introduce construction techniques of
these codes through the semigroup ring B[X ; 1

3Z0] instead of the polynomial ring
B[X ;Z0], where we improve the results of [1].

In this work we take B as a finite commutative ring with unity and in the same
spirit of [1], we fix a cyclic subgroup of group of units of the ring B[X ; 1

3Z0]/(X
n−1).

The factorization of Xs − 1 over the group of units of B[X ; 13Z0]/(X
n − 1) is the

main problem. These processes of constructing linear codes through the semigroup
ring B[X ; 13Z0] are very similar to linear codes over finite rings and this work needs
Galois extension rings, because some of the properties of Galois extension fields do
not hold here.

This paper is organized as follows. In Section 2, we give some basic results
on semigroups and semigroup rings necessary for the construction of the codes.
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In Section 3, we address the constructions of BCH and alternant codes through a
semigroup ring instead of a polynomial ring. In Section 4, we describe a construction
of Goppa and Srivastava codes through a semigroup ring. In Section 5, we present
a decoding principle for BCH, alternant and Goppa codes constructed through a
semigroup ring, which is based on modified Berlekamp-Massey algorithm [3]. This
algorithm corrects all errors up to the Hamming weight t ≤ r/2, i.e., whose minimum
Hamming distance is r + 1.

2. Basic Results

Assume that (B,+, ·) is an associative ring and (S, ∗) is a semigroup. Let J be
the set of all finitely nonzero functions f from S into B. The set J is a ring
with respect to the binary operations of addition and multiplication defined as
(f + g)(s) = f(s) + g(s) and (fg)(s) =

∑

t∗u=s f(t)g(u), where the symbol
∑

t∗u=s

indicates that the sum is taken over all pairs (t, u) of elements of S such that t∗u = s
and it is understood that in the situation where s is not expressible in the form t∗u
for any t, u ∈ S, then (fg)(s) = 0. The set J is known as the semigroup ring of S
over B. If S is a monoid, then J is called a monoid ring. The ring J is represented
as B[S] whenever S is a multiplicative semigroup and the elements of J are written
either as

∑

s∈S f(s)s or as
∑n

i=1 f(si)si. The representation of J will be B[X ;S]
whenever S is an additive semigroup. As there is an isomorphism between additive
semigroup S and multiplicative semigroup {Xs : s ∈ S}, so a nonzero element f of
B[X ;S] is uniquely represented in the canonical form

∑n
i=1 f(si)X

si =
∑n

i=1 fiX
si ,

where fi 6= 0 and si 6= sj for i 6= j.

The concepts of degree and order are not generally defined in semigroup rings.
But if we consider S to be a totally ordered semigroup, we can define the degree
and order of an element of semigroup ring B[X ;S] in the following manner; if
f =

∑n
i=1 fiX

si is the canonical form of the nonzero element f ∈ B[X ;S], where
s1 < s2 < · · · < sn, then sn is called the degree of f and we write deg(f) = sn and
similarly the order of f is written as ord(f) = s1. Now, if B is an integral domain,
then deg(fg) =deg(f)+deg(g) and ord(fg) =ord(f)+ord(g), for f, g ∈ B[X ;S].

If S is Z0 and B is an associative ring, the semigroup ring J is simply the
polynomial ring B[X ]. Obviously B[X ] = B[X ;Z0] ⊂ B[X ; 1

3Z0]. Furthermore,
it is noticed that in B[X ; 1

3Z0] we can define the degree of a pseudo polynomial
because 1

3Z0 is an ordered monoid.

3. BCH and Alternant Codes

In this section, we assume that (B,N) is a finite local commutative ring with unity
and residue field K = B

N
∼= GF (pm), where p is a prime and m a positive integer. The

natural projection π : B[X ; 1
3Z0] → K[X ; 13Z0] is defined by π(a(X

1
3 )) = a(X

1
3 ),

i.e., π(
∑n

i=0 aiX
1
3 i) =

∑n

i=0 aiX
1
3 i, where ai = ai + N , for i = 0, 1, · · · , n. Let

f(X
1
3 ) be a monic pseudo polynomial of degree t in B[X ; 1

3Z0] such that π(f(X
1
3 ))

is irreducible in K[X ; 13Z0]. By [4, Theorem 7.2] it follows that B[X ; 1
3Z0] can be
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accommodated as B[X ;Z0] and following [5, Theorem XIII.7] it follows that f(X
1
3 )

is irreducible in B[X ; 1
3Z0]. The ring ℜ =

B[X; 13Z0]

(f(X
1
3 ))

is a local finite commutative

ring with identity, whose maximal ideal is N2 = N1

(f(X
1
3 ))

, where N1 = (N, f(X
1
3 ))

and the residue field is K1 = ℜ
N2

∼=
B[X; 13Z0]

(N,f(X
1
3 ))

∼=
K[X; 13Z0]

(π(f(X
1
3 )))

∼= GF (p3mt), and K
∗
1 is

the multiplicative group of K1 whose order is p3mt − 1.
Let the multiplicative group of units of ℜ be denoted by ℜ∗, which is an abelian

group, and therefore it can be expressed as a direct product of cyclic groups. We
are interested in the maximal cyclic subgroup of ℜ∗, hereafter denoted by Gs, whose
elements are the roots of Xs− 1 for some positive integer s such that gcd(p, s) = 1.
There is only one maximal cyclic subgroup of ℜ∗ having order s = p3mt − 1 [5,
Theorem XVIII.2].

Definition 3.1. Let η = (α1, · · · , αn) be a vector consisting of distinct elements of
Gs, and let ω = (ω1, · · · , ωn) be an arbitrary vector consisting of elements of Gs.
The set of all vectors (ω1f(α1), ω2f(α2), · · · , ωnf(αn)), where f(z) ranges over all
polynomials of degree at most k − 1, for k ∈ N, with coefficients from ℜ, defines a
shortened code C of length n ≤ s over ℜ.

Definition 3.2. A shortened BCH code C(n, η) of length n ≤ s is a code over B
that has parity-check matrix

H =











α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αr
1 αr

2 · · · αr
n











for some r ≥ 1, where η = (α1, α2, · · · , αn) is the locator vector, consisting of
distinct elements of Gs.

Lemma 3.1. If α
1
3 is an element of Gs of order s, then the differences α

1
3 l1 −α

1
3 l2

are units in ℜ if 0 ≤ l1 6= l2 ≤ s− 1.

Proof. The element α
1
3 l1−α

1
3 l2 can be written as −α

1
3 l2(1−α

1
3 (l1−l2)), where l1 > l2

and 1 denotes the unity of ℜ. The factor −α
1
3 l2 in the product is a unit. The second

factor can be written as 1−α
1
3 j for some integer j in the interval [1, s− 1]. Now, if

the element 1−α
1
3 j , for some 1 ≤ j ≤ s−1, were not a unit in ℜ, then 1−α

1
3 j ∈ N2,

and consequently, (π(α
1
3 ))j = π(1) for j < s. Since π is injective when restricted to

Gs, it follows that π(α
1
3 ) has order j < s, which is a contradiction. Thus 1−α

1
3 j ∈ ℜ

are units for all j = 1, 2, · · · , s− 1.

Theorem 3.1. The minimum Hamming distance of a BCH code C(n, η) satisfies
d ≥ r + 1.

Proof. Assume that c is a nonzero codeword in C(n, η) such that wH(c) ≤ r. Then
cHT = 0. Deleting n − r columns of the matrix H corresponding to zeros of the
codeword, it follows that the new matrix H ′ is Vandermonde’s one. By Lemma 3.1,
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it follows that the determinant is a unit in ℜ. Thus the only possibility for c is the
all zero codeword.

Example 3.1. Let B = GF (2)[i] and ℜ =
B[X; 13Z0]

(f(X
1
3 ))

, where f(X
1
3 ) = (X

1
3 )3 +

X
1
3 + 1 is irreducible over B. If α

1
3 is a root of f(X

1
3 ), then α

1
3 generates a cyclic

group Gs of order s = 23−1 = 7. Let η = (1, α, α
1
3 , α

2
3 , α2, α

4
3 ) be the locator vector

consisting of distinct elements of G7. If r = 3, then the following matrix

H =





1 α α
1
3 α

2
3 α2 α

4
3

1 α2 α
2
3 α

4
3 α

5
3 α

1
3

1 α
2
3 α α2 α

4
3 α

5
3





is the parity-check matrix of a BCH code C(6, η) of length 6 and, by Theorem 3.1,
the minimum Hamming distance at least equal to 4.

Definition 3.3. A shortened alternant code C(n, η, ω) of length n ≤ s is a code
over B that has parity-check matrix

H =















ω1 · · · ωn

ω1α1 · · · ωnαn

ω1α
2
1 · · · ωnα

2
n

...
. . .

...
ω1α

r−1
1 · · · ωnα

r−1
n















=











1 · · · 1
α1 · · · αn

...
. . .

...
αr−1
1 · · · αr−1

n

















w1 · · · 0
...

. . .
...

0 · · · wn






= LM,

where r is a positive integer, η = (α1, α2, · · · , αn) is the locator vector, consisting of
distinct elements of Gs, and ω = (ω1, ω2, · · · , ωn) is an arbitrary vector consisting
of elements of Gs.

Theorem 3.2. An alternant code C(n, η, ω) has minimum Hamming distance d ≥
r + 1.

Proof. Assume that c is a nonzero codeword in C(n, η, ω) such that the weight
wH(c) ≤ r. Then cHT = c(LM)T = 0. Setting b = cMT it follows that wH(b) =
wH(c) since M is diagonal and invertible. Thus bLT = 0. Deleting n − r columns
of the matrix L that correspond to zeros of the codeword, it follows that the new
matrix L′ is Vandermonde’s one. By Lemma 3.1, it follows that the determinant is
a unit in ℜ. Thus, the unique possibility for c is the all zero codeword.

Example 3.2. Referring to Example 3.1, if η = (α
1
3 , α2, 1, α

2
3 , α, α

5
3 ) is the locator

vector, ω = (α2, α
1
3 , α, α

5
3 , α

4
3 , 1) and r = 3, then the following matrix

H =





α2 α
1
3 α α

5
3 α

4
3 1

1 1 α 1 1 α
5
3

α
1
3 α2 α α

2
3 α α





is the parity-check matrix of an alternant code C(6, η, ω) of length 6 and, by Theorem
3.2, the minimum Hamming distance at least equal to 4.
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4. Goppa and Srivastava Codes

In this section, we construct a subclass of alternant codes through a semigroup
ring instead of a polynomial ring, which is similar to one initiated by Andrade
and Palazzo [1] through polynomial rings. Goppa codes are described in terms of
a Goppa polynomial h(X) and in contrast to cyclic codes, where it is difficult to
estimate the minimum Hamming distance d from the generator polynomial, Goppa
codes have the property that d ≥ deg(h(X)) + 1.

Let B, ℜ and Gs as defined in previous section. Let h(X) = h0 + h1X +
h2X

2 + · · · + hrX
r be a polynomial with coefficients in ℜ and hr 6= 0. Let T =

{α1, α2, · · · , αn} be a subset of distinct elements of Gs such that h(αi) are units
from ℜ, for i = 1, 2, · · · , n.

Definition 4.1. A shortened Goppa code C(T, h) of length n ≤ s is a code over B
that has parity-check matrix of the form

H =











h(α1)
−1 · · · h(αn)

−1

α1h(α1)
−1 · · · αnh(αn)

...
. . .

...
αr−1
1 h(α1)

−1 · · · αr−1
n h(αn)











, (4.1)

where r is a positive integer, η = (α1, α2, · · · , αn) is the locator vector consisting of
distinct elements of Gs, and ω = (h(α1)

−1, · · · , h(αn)
−1) is a vector consisting of

elements of Gs.

Definition 4.2. Let C(T, h) be a Goppa code.

1. If h(X) is irreducible then C(T, h) is called an irreducible Goppa code.

2. If c = (c1, c2, · · · , cn) ∈ C(T, h) and c = (cn, · · · , c2, c1) ∈ C(T, h), then
C(T, h) is called a reversible Goppa code.

3. If h(X) = (X − β)r−1, then C(T, h) is called a comulative Goppa code.

4. If h(X) has no multiple zeros, then C(T, h) is called a separable Goppa code.

Remark 4.1. Let C(T, h) be a Goppa code.

1. The code C(T, h) is a linear code.

2. A Goppa code with Goppa polynomial hl(X) = (X −βl)
rl , where βl ∈ Gs, has

parity-check matrix

Hl =











(α1 − βl)
−rl (α2 − βl)

−rl · · · (αn − βl)
−rl

α1(α1 − βl)
−rl α2(α2 − βl)

−rl · · · αn(αn − βl)
−rl

...
...

. . .
...

α
rl−1

1 (α1 − βl)
−rl α

rl−1

2 (α2 − βl)
−rl · · · α

rl−1
n (αn − βl)

−rl










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which is row equivalent to the matrix










(α1 − βl)
−rl (α2 − βl)

−rl · · · (αn − βl)
−rl

(α1 − βl)
−(rl−1) (α2 − βl)

−(rl−1)

· · · (αn − βl)
−(rl−1)

...
...

. . .
...

(α1 − βl)
−1 (α2 − βl)

−1 · · · (αn − βl)
−1











.

Consequently, if h(X) = (X − βl)
rl =

∏k
i=1 hl(x) then the Goppa code is

the intersection of the codes with hl(X) = (X − βl)
rl , for l = 1, 2, · · · , k,

and its parity check matrix is given by H = [ H1 H2 · · · Hk ]T , where T
indicates the transposition.

3. A BCH code is a special case of a Goppa code. To verify this, choose h(X) =
Xr and T = {α1, α2, · · · , αn}, where αi ∈ Gs, for all i = 1, 2, · · · , n. Then
from Equation (4.1) it follows that

H =











α−r
1 α−r

2 · · · α−r
n

α1−r α1−r
2 · · · α1−r

n

...
...

. . .

α−1
1 α−1

2 · · · α−1
n











which becomes the parity-check matrix of a BCH code, where α−1
i is replaced

by βi, for i = 1, 2, · · · , n.

Theorem 4.1. A Goppa code C(T, h) has minimum Hamming distance d ≥ r +1.

Proof. A Goppa code C(T, h) is an alternant code C(n, η, ω), where η = (α1, α2, · · · , αn)
is the locator vector and ω = (h(α1)

−1, h(α2)
−1 · · · , h(αn)

−1). Therefore, by The-
orem 3.2, it follows that C(T, h) has minimum distance d ≥ r + 1.

Example 4.1. Referring to Example 3.1, if r = 3, h(X) = X3+X2+X+1 and T =

{α, α2, α
1
3 , α

2
3 , α

4
3 , α

5
3 } then η = (α, α2, α

1
3 , α

2
3 , α

5
3 , α

4
3 ) and ω = (α

2
3 , α

1
3 , α

5
3 , α, α2, α

2
3 ).

Therefore

H =





α
2
3 α

1
3 α

5
3 α α2 α

2
3

α
5
3 1 α2 α

5
3 α 1

α
1
3 α2 1 1 1 α

5
3





is the parity-check matrix of a Goppa code over B of length 6 and, by Theorem 4.1,
the minimum Hamming distance is at least equal to 4.

We define Srivastava codes over semigroup ring, which is an interesting subclass
of alternant codes which is similar to unpublished work [6], which is proposed by
J. N. Srivastava in 1967, as a class of linear codes which are not cyclic having
parity-check matrices given by

H = (ai,j)1≤i≤r,1≤j≤n,

where aij =
αl

j

1−αiβj
for 1 ≤ i ≤ r, 1 ≤ j ≤ n, α1, α2, · · · , αr are distinct elements

from GF (qm) and β1, β2, · · · , βn are all the elements of GF (qm), with βj 6= α−1
j

and βj 6= 0.
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Definition 4.3. A shortened Srivastava code of length n ≤ s is a code over B
having parity-check matrix

H =















αl
1

α1−β1

αl
2

α2−β1
· · ·

αl
n

αn−β1

αl
1

α1−β2

αl
2

α1−β2
· · ·

αl
n

αn−β2

...
...

. . .
...

αl
1

α1−βr

αl
2

α1−βr
· · ·

αl
n

αn−βr















,

where r, l are positive integers and α1, · · · , αn, β1, β2, · · · , βr are n+ r distinct ele-
ments of Gs.

Theorem 4.2. A Srivastava code has minimum Hamming distance d ≥ r + 1.

Proof. The minimum Hamming distance of a Srivastava code is at least r+1 if and
only if every combination of r or fewer columns of H is linearly independent over
ℜ, or equivalently that the submatrix

H1 =

















αl
i1

αi1−β1

αl
i2

αi2−β1
· · ·

αl
ir

αi3r−β1

αl
i1

αi1−β2

αl
2

αi2−β2
· · ·

αl
ir

αir−β2

...
...

. . .
...

αl
i1

αi1−βr

αl
i2

αi2−βr
· · ·

αl
ir

αir−βr

















is nonsingular. The determinant of this matrix can be expressed as det(H1) =
(αi1 , αi2 , · · · , αir )

ldet(H2), where the matrix H2 is given by

H2 =













1
αi1−β1

1
αi2−β1

· · · 1
αi3r

−β1

1
αi1−β2

1
αi2−β2

· · · 1
αi3r

−β2

...
...

. . .
...

1
αi1−βr

1
αi2−βr

· · · 1
αir−βr













.

Note that det(H2) is a Cauchy determinant of order r and therefore we conclude
that the determinant of the matrix H1 is given by

det(H1) = (αi1 , · · · , αir )
l (−1)

(
r
2

)

φ(αi1 , · · · , αi3r )φ(β1, β2, · · · , βr)

v(αi1 )v(αi2 ) · · · v(αir )
,

where φ(αi1 , · · · , αir ) =
∏

ij<ih
(αij − αih) and v(x) = (x− β1)(x− β2) · · · (x− βr).

Then, by Lemma 3.1, it follows that det(H1) is a unit in ℜ and therefore d ≥
r + 1.

Example 4.2. Referring to Example 3.1, if n = 4, r = 3, l = 1, {α1, · · · , α4} =



86 Andrade, Shah and Khan

{1, α, α2, α
1
3 }, {β1, β2, β3} = {α

2
3 , α

4
3 , α

5
3 } then the matrix H given by













1

1−α
2
3

α

α−α
2
3

α2

α2−α
2
3

α
1
3

α
1
3 −α

2
3

1

1−α
4
3

α

α−α
4
3

α2

α2−α
4
3

α
1
3

α
1
3 −α

4
3

1

1−α
5
3

α

α−α
5
3

α2

α2−α
5
3

α
1
3

α
1
3 −α

5
3













is the parity-check matrix of a Srivastava code with a minimum distance at least
equal to 4.

Definition 4.4. Assume that r = kl and let α1, · · · , αn, β1, β2, · · · , βk be n + k
distinct elements of Gs, ω1, · · · , ωn be elements of Gs. A generalized Srivastava
code of length n ≤ s is a code over B that has parity check matrix

H =
[

H1 H2 · · · Hk

]T
, (4.2)

where

Hj =













ω1

α1−βj

ω2

α2−βj
· · · ωn

αn−βj
ω1

(α1−βj)2
ω2

(α2−βj)2
· · · ωn

(αn−βj)2

...
...

. . .
...

ω1

(α1−βj)l
ω2

(α2−βj)l
· · · ωn

(αn−βj)l













for j = 1, 2, · · · , k.

Theorem 4.3. A generalized Srivastava code has minimum Hamming distance
d ≥ kl + 1.

Proof. The proof of this theorem requires nothing else than on application of Re-
mark 4.1 and Theorem 4.2, since the matrices (4.1) and (4.2) are equivalent, where
g(Z) = (Z − βi)

l.

5. Decoding Procedure

The decoding algorithm for BCH, alternant and Goppa codes consists of four major
steps: (1) calculation of the syndromes, (2) calculation of the error-locator polyno-
mial, (3) calculation of the error-location numbers, and (4) calculation of the error
magnitudes. This algorithm is based on the modified Berlekamp-Massey algorithm
[3] which corrects all errors up to the Hamming weight t ≤ r/2, i.e., whose minimum
Hamming distance is r + 1. The complexity of the proposed decoding algorithm is
essentially the same as that these codes are defined over finite fields.

Let B, ℜ and Gs as defined in previous section. Let c = (c1, c2, · · · , cn) be a
transmitted codeword and b = (b1, b2, · · · , bn) be the received vector. Thus the
error vector is given by e = (e1, e2, · · · , en) = b − c. Let η = (α1, α2, · · · , αn) =
(βk1 , βk2 , · · · , βkn) be a vector over Gs, where β is a generator of Gs. Suppose
that ν ≤ t is the number of errors which occurred at locations x1 = αi1 , x2 =
αi2 , · · · , xν = αiν with values y1 = ei1 , y2 = ei2 , · · · , yν = eiν . Since s = (s1, s2,
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· · · , sr) = bHt = eHt, it follows that the first r syndrome values sl can be calcu-
lated from the received vector b. Therefore sl =

∑n
j=1 ejα

l
j =

∑n
j=1 bjα

l
j , for l =

1, 2, · · · , r, for a BCH code; sl =
∑n

j=1 ejwjα
l
j =

∑n
j=1 bjwjα

l
j , for l = 0, 1, 2, · · · , r−

1, for an alternant code; and sl =
∑n

j=1 ejh(αj)
−1αl

j =
∑n

j=1 bjh(αj)
−1αl

j , for
l = 0, 1, 2, · · · , r − 1, for a Goppa code.

The elementary symmetric functions σ1, σ2, · · · , σν of the error-location numbers
x1, x2, · · · , xν are defined as the coefficients of the polynomial σ(Z) =

∏ν

i=1(Z −
xi) =

∑ν
i=0 σiZ

ν−i, where σ0 = 1. Thus, the decoding algorithm consists of four
major steps:
Step 1 Calculation of the syndrome vector s from the received vector.
Step 2 Calculation of the elementary symmetric functions σ1, σ2, · · · , σν from s,
using the modified Berlekamp-Massey algorithm [3].
Step 3 Calculation of the error-location numbers x1, x2, · · · , xν from σ1, σ2, · · · , σν ,
that are roots of σ(z).
Step 4 Calculation of the error magnitudes y1, y2, · · · , yν from xi and s, using
Forney’s procedure [7].

There is no need to comment on Step 1 since the calculation of the vector
syndrome is straightforward. In Step 2, the calculation of the elementary symmetric
functions is equivalent to finding a solution σ1, σ2, · · · , σν , with minimum possible
ν, to the following set of linear recurrent equations over ℜ

sj+ν + sj+ν−1σ1 + · · ·+ sj+1σν−1 + sjσν = 0, j = 0, 1, 2, · · · , (r − 1)− ν, (5.1)

where s0, s1, · · · , sr−1 are the components of the syndrome vector. We make use of
the modified Berlekamp-Massey algorithm to find the solutions of Equation (5.1).
The algorithm is iterative, in the sense that the following n− ln equations (called
power sums)



































snσ
(n)
0 + sn−1σ

(n)
1 + · · ·+ sn−lnσ

(n)
ln

= 0

sn−1σ
(n)
0 + sn−2σ

(n)
1 + · · ·+ sn−ln−1σ

(n)
ln

= 0

...

sln+1σ
(n)
0 + slnσ

(n)
1 + · · ·+ s1σ

(n)
ln

= 0

are satisfied with ln as small as possible and σ
(0)
0 = 1. The polynomial σ(n)(Z) =

σ
(n)
0 + σ

(n)
1 Z + · · · + σ

(n)
ln

Zn represents the solution at the n-th stage. The n-

th discrepancy is denoted by dn and defined by dn = snσ
(n)
0 + sn−1σ

(n)
1 + · · · +

sn−lnσ
(n)
ln

. The modified Berlekamp-Massey algorithm for commutative rings with
identity is formulated as follows. The inputs to the algorithm are the syndromes
s0, s1, · · · , sr−1 which belong to ℜ. The output of the algorithm is a set of values σi,
for i = 1, 2, · · · , ν, such that Equation (5.1) holds with minimum ν. Let σ(−1)(Z) =
1, l−1 = 0, d−1 = 1, σ(0)(Z) = 1, l0 = 0 and d0 = s0 be the a set of initial conditions
to start the algorithm as in Peterson [8]. The steps of the algorithm are:
1. n← 0.
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2. If dn = 0, then σ(n+1)(Z)← σ(n)(Z) and ln+1 ← ln and to go 5).
3. If dn 6= 0, then find m ≤ n − 1 such that dn − ydm = 0 has a solution y and
m − lm has the largest value. Then, σ(n+1)(Z) ← σ(n)(Z) − yZn−mσ(m)(Z) and
ln+1 ← max{ln, lm + n−m}.
4. If ln+1 = max{ln, n + 1 − ln} then go to step 5, else search for a solution
D(n+1)(Z) with minimum degree l in the range max{ln, n+1− ln} ≤ l < ln+1 such
that σ(m)(Z) defined by D(n+1)(Z)− σ(n)(Z) = Zn−mσ(m)(Z) is a solution for the

first m power sums, dm = −dn, with σ
(m)
0 a zero divisor in ℜ. If such a solution is

found, σ(n+1)(Z)← D(n+1)(Z) and ln+1 ← l.

5. If n < r − 1, then dn = sn + sn−1σ
(n)
1 + · · ·+ sn−lnσ

(n)
ln

.
6. n← n+ 1; if n < r − 1 go to 2); else stop.

The coefficients σ
(r)
1 , σ

(r)
2 , · · · , σ

(r)
ν satisfy Equation (5.1). At Step 3, the solution

to Equation (5.1) is generally not unique and the reciprocal polynomial ρ(Z) of the
polynomial σ(r)(Z) (output by the modified Berlekamp-Massey algorithm), may not
be the correct error-locator polynomial (Z − x1)(Z − x2) · · · (Z − xν), where xj =
βki , for j = 1, 2, · · · , ν and i = 1, 2, · · · , n, are the correct error-location numbers.
Thus, the procedure for the calculation of the correct error-location numbers is the
following:
(a) compute the roots z1, z2, · · · , zν of ρ(Z); and
(b) among the xi = βkj , for j = 1, 2 · · · , n, select those xi’s such that xi − zi are
zero divisors in ℜ. The selected xi’s will be the correct error-location numbers and
each kj , for j = 1, 2, · · · , n, indicates the position j of the error in the codeword.

At Step 4, the calculation of the error magnitude is based on Forney’s procedure
[7]. The error magnitude is given by

yj =

∑ν−1
l=0 σjlsν−1−l

Ej

∑ν−1
l=0 σjlx

ν−1−l
j

, (5.2)

for j = 1, 2, · · · , ν, where the coefficients σjl are recursively defined by σj,i = σi +
xjσj,i−1, for i = 0, 1, · · · , ν − 1, starting with σ0 = σj,0 = 1. The Ei = 1 for
BCH code, Ej = wij for alternant code and Ej = h(xi)

−1 for Goppa code, for
i = 1, 2, · · · , ν, are the corresponding location of errors in the vector w. It follows,
from Lemma 3.1, that the denominator in Equation (5.2) is always a unit in ℜ.

Example 5.1. Referring to Example 3.1, if b = (1, 0, 0, 0, 0, 0) is the received
vector, then the syndrome vector is given by s = bHt = (1, 1, 1). Applying the
modified Berlekamp-Massey algorithm, it follows that σ(6)(Z) = 1 + Z. The root of
ρ(Z) = Z + 1 (the reciprocal of σ(6)(Z)) is z1 = 1. Among the elements of Gs we
have x1 = 1 is such that x1 − z1 = 0 is a zero divisor in ℜ. Therefore, x1 is the
correct error-location number, and k1 = 1 indicates that the error has occurred in
the first coordinate of the codeword. Finally, applying Forney’s method to s and x1,
gives y1 = 1. Therefore, the error pattern is given by e = (1, 0, 0, 0, 0, 0).

Resumo. Neste trabalho, introduzimos novas técnicas de construções de códigos
BCH, alternant, Goppa, Srivastava através do anel semigrupo B[X; 1

3
Z0] em vez do

anel de polinômio B[X;Z0], onde B é um anel comutativo finito com identidade, e
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para essas construções melhoramos vários resultados de [1]. Depois disto, apresen-
tamos um principio de decodificação para os códigos BCH, alternant and Goppa
baseado no algoritmo de Berlekamp-Massey modificado. Este algoritmo corrige
todos os padrões de erros com peso de Hamming t ≤ r/2, i.e., cuja distância de
Hamming mínimua é r + 1.

Palavras-chave. Anel semigrupo, código BCH, código alternant, código de Goppa,
código Srivastava.
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