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ABSTRACT. The physical phenomenon of neutrons transport associated with eigenvalue problems ap-
pears in the criticality calculations of nuclear reactors and can be treated as a diffusion process. This paper
presents a method to solve eigenvalue problems of neutron diffusion in slab geometry and one energy group.
This formulation combines the Finite Element Method, considered an intermediate mesh method, with the
Spectral Green’s Function Method, which is free of truncation errors, and it is considered a coarse mesh
method. The novelty of this formulation is to approach the spatial moments of the neutron flux distribution
by the first-order polynomials obtained from the spectral analysis of diffusion equation. The approxima-
tions provided by the proposed formulation allow obtaining accurate results in coarse mesh calculations.
To validate the proposed method, we compared its results with methods described in the literature. The
accuracy and computational performance of our formulation were characterized by solving a benchmark
problem with a high degree of heterogeneity.

Keywords: Eigenvalue problems, Neutron diffusion equation, Spectral Green’s function.

1 INTRODUCTION

Population growth and economic development require the continuous increase of electricity gen-

eration capacity. To attend this demand without aggravation of the environmental problems asso-
ciated with the greenhouse effect is a major challenge for scientists, economists and politicians
nowadays. In this context, nuclear energy appears as one of the generation alternatives without
carbon dioxide emissions. In Brazil, the energy development plan anticipates, in the next years,

an increase of nuclear power generation in the energy matrix [13].

Among the main concerns related to the use of nuclear energy there is the safety and the radioac-
tive materials contention in the reactor core. These issues are associated with the monitoring and
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control of the neutron population in the reactor. For this reason, during the design and operation

of nuclear plants, we need accurate and efficient numerical methods to assess the neutron flux
distribution and the effective multiplication factor. This problem is associated with the nuclear
reactor criticality calculations, and is also known as a neutron transport eigenvalue problem [16].

The physical modeling of the phenomenon of neutron transport involves the migration of neu-

trons in a host medium and the probability of interaction between neutrons and atoms [5]. Many
scientists treat the neutron transport phenomenon as a diffusion process, thus, one of the math-
ematical models that allow us to describe this physical phenomenon is the neutron diffusion

equation (DE). The DE is a simple model that provides accurate results for the distribution of
neutron flux and the effective multiplication coefficient [12]. Many neutron transport problems
are well modelled in one-dimensional Cartesian geometry. That is a good approximation when

the neutron flux has rough changes in one spatial direction x (axial) and smoother changes in the
symmetrical plane y − z. For that reason, many authors use one-dimensional Cartesian geometry
models in recent neutron transport works [9, 19, 20, 21].

For computational performance reasons it is desirable to obtain accurate results for the distri-

bution of neutron flux and the effective multiplication coefficient in a coarse mesh. Among the
coarse mesh methods, we can highlight the Spectral Green’s Function Nodal Methods (SGF)
[2, 10]. The SGF method had its origins in the Spectral-Nodal Method with constant approxi-

mation for the discrete ordinates model in source-fixed problems [3]. Since then, several other
formulations have been developed, for example, the SGF method for discrete ordinates [4] and
the SGF formulation for diffusion approximation [11], both of them, in Cartesian geometry for
neutron multiplying systems. The SGFs methods have high algebraic cost and complex compu-

tational algorithm and, for that reason, the linear Finite Element Method (FEM) has been used
to solve some of the nuclear engineering problems. The FEM method offers appropriated results
for fine and intermediate meshes [22, 23]. The use of analytical solutions, enriching the finite

element methods is well established in the solution of several engineering problems [14, 15, 18].
However, this approach is less known in neutron transport applications.

The formulation proposed in this work combines the linear approximation of FEM method with a
quasi-analytic approach of SGF to solve neutron diffusion eigenvalue problems in slab geometry

and one energy group. The combination of these methods aims to generate accurate results with
high computational performance, preserving the analytical spectral solutions inside the elements.
We validate this formulation by solving benchmark problems and compare the obtained results

with other methods.

In the next section we discuss the difussion mathematical model and the discretization scheme.
In the section 3, we present the hybrid formulation fundamentals. The numerical results are
offered in section 4 for a benchmark problem with high degree of heterogeneity. Finally, in

section 5, we give the final comments and suggestions for future works.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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2 THE MATHEMATICAL MODEL

In this paper, the deterministic mathematical modeling of the neutron transport in multiplying
medium is based on the diffusion equation. We consider a static model in slab geometry, disre-

garding the energy dependence. This model [16, 22] is a system composed by two equations, the
balance equation

d J (x)

dx
+ �a(x)φ(x) = 1

ke f f
ν� f (x)φ(x), (2.1)

and, the Fick’s law,

J (x) = −D(x)
dφ(x)

dx
, 0 ≤ x ≤ L . (2.2)

The equation (2.1) represents the mono-energetic diffusion equation, which describes the gain
and loss of neutrons, while (2.2) refers to the Fick’s law, which describes the neutron’s difussion,
that is, the neutrons migration from high density regions to low density regions [12]. In (2.1)
and (2.2), J (x) is the neutron current, φ(x) is the neutron flux, �a(x) is the macroscopic ab-

sorption cross section, ke f f is the effective multiplication coefficient, ν is the average number of
neutrons released by fission event, � f (x) is the macroscopic fission cross section, D(x) is the
diffusion coefficient and L is the length of the one-dimensional domain.

The boundary conditions considered in this work are the Albedo boundary conditions [17], which
are represented by

J (0) = −αLφ(0), J (L) = αRφ(L), (2.3)

the terms αL ,R are Albedo proportionality constants.

2.1 Spatial Discretization Scheme

In general, to obtain the numerical solution for differential equations systems, the domain dis-

cretization is required. At this point, we define a spatial mesh with total length L and I elements
called �i , i = 1 : I , each one with length hi . The representation of this spatial mesh can be seen
in Figure 1.

Figure 1: Spatial mesh in the domain of length L .

Now, we write the equations (2.1) and (2.2) in discretized form for each element �i in the domain

d J (x)

dx
+ �aiφ(x) = 1

ke f f
ν� f iφ(x), (2.4)

J (x) = −Di
dφ(x)

dx
, i = 1 : I, xi−1/2 ≤ x ≤ xi+1/2, (2.5)

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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then, the Albedo boundary conditions, equations (2.3), appear in the following discretized form

J1/2 = −αLφ1/2, JI+1/2 = αRφI+1/2.

The next step is to obtain the spatial balance equations for the zero and first order moments in

each element �i . Thus, we need to apply the operator

2l + 1

hi

∫ xi+1/2

xi−1/2

•Pl

(
2(x − xi )

hi

)
dx,

in the equations (2.4) and (2.5). This operator is based in the Legendre polynomials [1], where
Pl represents the polynomial of l degree. For the zero order balance equations, l = 0, the Leg-

endre polynomial is a constant, P0(x) = 1. For first order, l = 1, we have a linear polynomial,
P1(x) = x .

The balance equations, for the zero order moment appear in the following form

1

hi
(Ji+1/2 − Ji−1/2) + �aiφi = 1

ke f f
ν� f iφi ,

Ji = − Di

hi
(φi+1/2 − φi−1/2),

where, the element average flux is

φi = 1

hi

∫ xi+1/2

xi−1/2

φ(x)dx, (2.6)

and the element average current is

Ji = 1

hi

∫ xi+1/2

xi−1/2

J (x)dx .

For the first order balance equations we have the following expressions

3

hi
(Ji+1/2 + Ji−1/2 − 2Ji) + �ai φ̂i = 1

ke f f
ν� f i φ̂i ,

Ĵi = −3Di

hi
(φi+1/2 + φi−1/2 − 2φi),

where, the flux first order moment is

φ̂i = 3

hi

∫ xi+1/2

xi−1/2

(
2(x − xi )

hi

)
φ(x)dx, (2.7)

and the the neutron current first order moment is defined as

Ĵi = 3

hi

∫ xi+1/2

xi−1/2

(
2(x − xi )

hi

)
J (x)dx .

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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3 THE FEM-SGF FORMULATION

The hybrid formulation proposed (FEM-SGF) in this paper combines two methods found in the
literature. One of these methods is the FEM that obtains the solution of the diffusion model

for eigenvalue problems using approximation functions. In this work, we choose two linear ap-
proximation functions, one for the neutron flux and the other for neutron current, such functions
satisfy the conditions described by integral equations in the domain. The other method that com-

poses the hybrid formulation is the one-dimensional SGF [2], this method, reaches the solution
of the diffusion equation with two spectral parameters αi and βi , obtained by spectral analysis of
the mathematical model. Thus, the hybrid formulation proposed is based on the combination of

linear approximation of the FEM with the approach quasi-analytic of the SGF.

The approximation functions of the FEM-SGF method appear in the following form

φ(x) = αiφi + 2βi

hi
(x − xi)φ̂i , (3.1)

J (x) = αi Ji + 2βi

hi
(x − xi) Ĵi , (3.2)

where, we introduce the spectral parameters of the SGF in the linear functions of the FEM.

To obtain the discretization of the approximation functions for the FEM-SGF, we need to evaluate
those functions into the element edges. For the elements belonging to left half of the domain, we

evaluate the functions (3.1) and (3.2) in the element right edge, xi+1/2, these functions discretized
appear as

φi+1/2 = αiφi + βi φ̂i , (3.3)

Ji+1/2 = αi Ji + βi Ĵi . (3.4)

For the elements in the right half of domain, the functions (3.1) and (3.2) are evaluated in the
element left edge and the result is

φi−1/2 = αiφi − βi φ̂i , (3.5)

Ji−1/2 = αi Ji − βi Ĵi . (3.6)

When the mesh has an odd number of elements, we must equate the average flux in equa-

tions (3.3) and (3.5), and the average current in equations (3.4) and (3.6), inside the central
element to ensure the symmetry conditions in the domain. The resulting equations are

2βi φ̂i − φi+1/2 + φi−1/2 = 0,

2βi Ĵi − Ji+1/2 + Ji−1/2 = 0.

Now, we calculate the spectral parameters, αi and βi , of the approximation functions in the
FEM-SGF. For that, we need to obtain general analytical solutions for the diffusion equation.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)



�

�

“main” — 2016/8/29 — 11:14 — page 178 — #6
�

�

�

�

�

�

178 FEM-SGF FOR NEUTRON DIFFUSION IN MULTIPLYING MEDIA

These solutions can be calculated by the spectral analysis, a technique proposed by Case and

Zweifel [8]. The general analytical solutions can be write as

φ(x) = k1ex/μi + k2e−x/μi , J (x) = k1
−Di

μi
ex/μi + k2

Di

μi
e−x/μi ,

where k1 and k2 are arbitrary constants, and μi are the eigenvalues of the problem. The arbi-
trary constants must be used to preserve the DE general analytical solution inside each spatial
element �i .

Next, we can choose, arbitrarily, any of the functions in the general solution, because both func-
tions carry the arbitrary constants k1 and k2, then, we select the function φ(x), equation (3).
The next step is to obtain the fluxes on the edges φi±1/2, by evaluating (3) in the element edges

(xi±1/2), which appears as

φi±1/2 = k1exi /μi e±hi/2μi + k2e−xi /μi e∓hi/2μi , (3.7)

at this point, we calculate the average flux φi , by substituting (3) in the definition (2.6), the

result appears as

φi = k1
μi exi /μi

hi

(
ehi/2μi − e−hi/2μi

)
+ k2

μi e−xi /μi

hi

(
ehi/2μi − e−hi/2μi

)
, (3.8)

finally, we calculate the first order moment of neutron flux φ̂i , by substituting (3) in the defini-
tion (2.7). The result appears in the following form

φ̂i = k1
3μi exi /μi

hi

(
ehi/2μi + e−hi/2μi

)
− k1

6μ2
i exi /μi

h2
i

(
ehi/2μi − e−hi/2μi

)

− k2
3μi e−xi /μi

hi

(
ehi/2μi + e−hi/2μi

)
+ k2

6μ2
i e−xi /μi

h2
i

(
ehi/2μi − e−hi/2μi

)
.

(3.9)

Now, we can substitute the expressions for φi±1/2, φi and φ̂i , equations (3.7), (3.8) and (3.9),
in (3.3) or (3.5) and write these in the form

k1(A − C) + k2(B − D) = 0, (3.10)

where,

A = exi /μi e±hi/2μi ,

B = e−xi/μi e∓hi/2μi ,

C = αi
μi exi /μi

hi

(
ehi/2μi − e−hi/2μi

)
+ βi

3μi exi /μi

hi

(
ehi/2μi + e−hi/2μi

)

− βi
6μ2

i exi /μi

h2
i

(
ehi/2μi − e−hi/2μi

)
,

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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D = αi
μi e−xi /μi

hi

(
ehi/2μi − e−hi/2μi

)
− βi

3μi e−xi /μi

hi

(
ehi/2μi + e−hi/2μi

)

+ βi
6μ2

i e−xi /μi

h2
i

(
ehi /2μi − e−hi/2μi

)
.

But, the general analytical solutions must be preserved for any k1 and k2 values, thus, (3.10) will
be satisfied if A = C and B = D. These equalities provide a linear system that lets us calculate

the parameters αi and βi . The eigenvalue μi can be real or pure imaginary, thus, we can have
two possible solutions,

(i) If �ai >
1

ke f f
ν� f i

αi = γi coth (γi ), βi = sinh (γi)

3 cosh (γi)

γi
− 3 sinh (γi )

γ 2
i

; (3.11)

(ii) If �ai <
1

ke f f
ν� f i

αi = γi cot (γi ), βi = − sin (γi )

3 cos (γi)

γi
− 3 sin (γi )

γ 2
i

; (3.12)

where γi = hi/2μi . The equations (3.11) and (3.12) used to calculate the parameters of aux-
iliary equations, ensure, that the general analytical solutions are preserved inside each spatial

element �i .

The algebraic linear equation system obtained by FEM-SGF is formed by (6I +2) unknowns and
the same number of discretized equations. In this system we can eliminate the average element
flux and the current (φi and Ji ). Also, we can remove the first order moment of the flux and

the current (φ̂i and Ĵi ). Thus, we obtain an equivalent and reduced equation system of (2I + 2)
order. The reduced system, represents an eigenvalue problem, then, we can use direct or iterative
techniques [7] to obtain the neutron flux distribution and the power method [7] to estimate the

effective multiplication coefficient.

4 RESULTS AND DISCUSSION

In order to quantify the accuracy and the computational performance of the developed method,
we compare the proposed formulation with conventional methods, specifically, the Diamond

Difference method (DD) [17] and FEM method. DD is considered a fine mesh method and it has
a low computational performance.

The benchmark chosen for the computational experiments has a domain with 150 cm of length,
divided into 6 regions, whose materials and geometric parameters are shown in Table 1. The

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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boundary conditions are reflexive in the left boundary and vacuum (αR = 0.5) in the right

boundary. The convergence criterion requires that the relative deviation between two estimates
of the effective multiplication factor to be less than or equal to 10−4%. The nominal power
considered in the reactor is 10 MW .

Table 1: Materials and geometric parameters of benchmark problem.

D (cm−1) �a (cm−1) ν� f (cm−1) length (cm)

Region 1 1 0,24 0,2733 25

Region 2 1, 3 0,22 0,2565 25

Region 3 1 0, 44 0,17 30

Region 4 1, 3 0,1726 0,23 15

Region 5 2, 7 0,046 0,015 30

Region 6 1 0,3 0,3526 25

The numerical results for neutron flux distribution appear in Figures 2 and 3. The reference
solution was generated using a fine mesh composed of 960 elements with the FEM method. The
Figure 2 shows the behavior of the neutron flux in the domain and the Figure 3 presents the

relative deviations of the three methods with respect to reference solution. As we see, in this
benchmark problem appear strong neutron flux gradients in some regions. Consequently, most
of the numerical methods fail to obtain accurate results.

Figure 2: Neutron flux distribution in the domain for DD, FEM and FEM-SGF methods using 30
elements in the spatial grid.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Figure 2 shows that the FEM-SGF method, with a coarse mesh (30 elements), keeps the neutron

flux close to reference solution, while the FEM, with the same mesh, moves away from the
reference solutions in the regions with strong gradients. On the other hand, the DD method
generates meaningless results for a coarse mesh calculations.

The differences between numerical results obtained by the three methods can be more noticeable

in Figure 3. The strongest variation of the neutron flux occurs in the region between x = 50
and x = 75. In this region the numerical methods find the major difficulty to estimate the
neutron flux. The FEM-SGF presents the smallest relative deviations, 0.01% approximately,

while in the FEM the relative errors vary between 1% to 100%. The relative errors associated to
DD are even higher.

Figure 3: Relative deviations in neutron flux distribution for DD, FEM and FEM-SGF methods
in coarse mesh.

To analyze the reactor power density results, we choose the region between x = 60 and
x = 100 cm, which presents a strong gradient in the neutron flux and a high neutron density.
The Table 2 shows the results for the power density and the relative deviations for each method.

The power density obtained using the FEM-SGF method presented a good agreement when we

compare with the reference solution, its relative deviation is about 0.1%. However, the FEM
method shows a relative deviation of 6%, approximately. The DD method was more sensitive to
coarse mesh and the strong flux gradient in this region, presenting a relative deviation of 97.6%.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Table 2: Numerical results for power density in the region
(60 ≤ x ≤ 100) for DD, FEM and FEM-SGF methods in coarse mesh.

Method (elements) Power (MW) Rel. deviation (%)

DD (30) 6.208733E-02 9.769013E+01

FEM (30) 2.523533E+00 6.115466E+00

FEM-SGF (30) 2.692115E+00 1.563635E-01

Reference: FEM (960) 2.687912E+00 ...

In the Figure 4, we present the relative deviation behavior, in power density calculations, as a
function of the element number for all the discussed formulations. In general, we can see that

the FEM-SGF reached the best results if compared with the conventional methods, for all spatial
meshes considered. Specifically, when we compare the FEM-SGF with the FEM, we notice that
it shows similar results with about 1/3 of the elements of the FEM. Therefore, the FEM-SGF is
as accurate, using a coarse mesh, as the DD in fine mesh and the FEM in intermediate mesh.

To complete this analysis, we compare the behavior of the relative deviation with the error ana-
lytical estimates for the analyzed methods (Fig. 4). The convergence order of the DD, FEM and
FEM-SGF methods, in asymptotic notation is O(h2) [6, 17]. We can also see in Figure 4, that

the curves of each method have similar behaviors modified by some multiplicative constant.

Figure 4: Relative deviation as a function of elements number for DD, FEM and FEM-SGF

methods.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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The numerical results for the effective multiplication coefficient (ke f f ) appear in Table 3. The

ke f f value obtained by FEM-SGF have the smallest relative deviation, 10−5%, approximately.
The results for the conventional methods (FEM and DD), suffer a bigger influence of the spatial
grid dimensions. They present relative errors of 10−3% and 10−2%, respectively.

Table 3: Numerical results for effective multiplication coefficient
for DD, FEM and FEM-SGF methods in coarse mesh.

Method (elements) ke f f Rel. deviation (%)

DD (30) 1.140051E+00 3.218296E-02

FEM (30) 1.140309E+00 9.573804E-03

FEM-SGF (30) 1.140419E+00 7.634042E-05

Reference: FEM (960) 1.140418E+00 ...

To characterize the FEM-SGF computational performance, we consider the dominant operation

in the algorithmic implementation of the numerical formulations. This dominant operation is
associated with the solution of the algebraic linear system generated by the discretization pro-
cedure in each method. The resulting matrices in the spatial discretization process are sparse,

specifically, they are banded symmetric [7]. The bandwidth for DD, FEM and FEM-SGF meth-
ods are 3, 4 and 4, respectively. Thus, considering the dominant operation, the computational
cost associated to the numerical formulations DD, FEM and FEM-SGF, in asymptotic notation,

is O(M)O(I ), where M is the iteration number of power method for eigenvalue convergence.
It is noteworthy that the DD generate an algebraic linear system with (I + 1) variables and equa-
tions, and the order of algebraic linear system generated by FEM is equivalent to FEM-SGF.

Moreover, due to the specific characteristic of the FEM-SGF, the matrix coefficients depend on
problem eigenvalue and must be updated on each iteration.

5 CONCLUSIONS AND FUTURE WORKS

We presented in this work a hybrid formulation to solve the one-dimensional neutron diffusion

equation in multiplying media and one energy group. The hybrid character of this formulation is
based on the combination of the FEM linear approximations with the SGF spectral parameters.
These parameters allow us to preserve the general analytic solutions inside each element. The

FEM-SGF formulation, permits to obtain accurate numerical results in coarse mesh, suggesting
a high computational performance.

The FEM-SGF generates satisfactory numerical results for the neutron flux distribution and the
effective multiplication coefficient in a coarse spatial grid. Considering accuracy and computa-

tional performance, the proposed method presents better results than conventional methods, FEM
and DD, in most of the cases. The computational experiments with coarse meshes showed that,
in regions with strong neutron flux gradients, the FEM-SGF keeps the numerical results close to

the reference solution unlike FEM and DD methods that generate results far from it. The hybrid

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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formulation using a coarse mesh presents the same precision than the compared methods with

finer meshes and, for that reason, it has the better computational performance.

As future works, we suggest to reduce the FEM-SGF algebraic linear system order to (I+1).
We also suggest to extend the hybrid formulation to solve multi-dimensional problems, and
consider multi-group approximations.

ACKNOWLEDGMENTS

Authors acknowledge to Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq, BRAZIL) and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB,
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RESUMO. A utilização de centrais nucleares para geração de energia elétrica é uma das

principais alternativas para atender a demanda energética nos próximos anos sem agravar os

problemas ambientais associados ao aquecimento global. O uso de métodos e técnicas de

simulação que estimem a população de nêutrons no núcleo é fundamental para garantir a

operação segura e confiável do reator. Neste trabalho apresentamos uma formulação hı́brida

para resolver problemas de autovalor de difusão de nêutrons em domı́nios unidimensionais

e aproximação de uma velocidade. Esta formulação combina a simplicidade do Método de

Elementos Finitos com uma aproximação Espectro-Nodal e permite obter resultados pre-

cisos em cálculos de malha grossa. A precisão e o desempenho computacional do método

proposto são caracterizados através da solução de um problema modelo com alto grau de

heterogeneidade.

Palavras-chave: Problemas de autovalor, Equação de difusão de nêutrons, Função espectral

de Green.
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