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ABSTRACT. Matrices are one of the most common representations of graphs. They are also used for
representing algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal
matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides
some properties of matrices in order to facilitate the understanding of symmetrizable matrices with spe-
cific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.
We sharpen known coefficient limits for such matrices. By generalizing Sylvester’s criterion for symmetriz-
able matrices we show that the localization problem is in NP and conjectured that it is NP-complete.

Keywords: symmetrizable matrix, positive quasi-Cartan matrix, algorithm.

1 INTRODUCTION

Matrices can be used to represent various structures, including graphs and algebras. For

instance, a cluster algebra can be defined using a directed graph, called quiver, and consequently
by an adjacency matrix, where rows and columns represent the vertices and the positive values
at positions (i, j ) represent the number of edges between associated vertices of the graph. For

more information about quiver and cluster algebras, see [1, 6, 7].

Cartan matrices were introduced by the French mathematician Élie Cartan [2]. In fact, Cartan
matrices, in the context of Lie algebras, were first investigated by Wilhelm Killing [8], whereas
the Killing form is due to Cartan.

The notion of quasi-Cartan matrices was introduced by Barot, Geiss and Zelevinsky [1] who
reported some their properties. Those matrices are symmetrizable and when associated with a
skew-symmetrizable matrix are called a quasi-Cartan companion. In Section 4, we sharpen the
bounds on the entries of a positive quasi-Cartan matrices, given by these authors.
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188 ALGORITHMS AND PROPERTIES FOR POSITIVE SYMMETRIZABLE MATRICES

By Sylvester’s criterion [3], a symmetric matrix is positive semidefinite if all its leading princi-
pal submatrices have positive determinants. A symmetrizable matrix is positive if its associated
symmetric matrix is also positive. In Section 4 we generalize Sylvester’s criterion for symmetriz-
able matrices.

Furthermore, one can decide whether a cluster algebra is of finite type (has a finite number of
cluster variables) by deciding whether the associated matrix has a positive quasi-Cartan com-
panion matrix. There are also other decision criteria, but they will not be discussed in the
present paper.

In this paper, we study the quasi-Cartan matrices from a mathematical and computational point
of view. Section 2 is devoted to some notations and definitions. In Section 3, we first present
some properties that a matrix should have in order to be a quasi-Cartan companion of a skew-
symmetrizable matrix B. After this, we developed two algorithms: the first one decides in time
complexity �(n2) if the matrix is symmetrizable and returns the symmetrizer if it exists; the sec-
ond one finds a symmetrizer matrix for a symmetrizable matrix, having time complexity �(n2) in
the worst case and �(n) in the best case. In Section 4, via generalization of Sylvester’s criterion
for symmetrizable matrices, we conclude that the problem of deciding if a matrix has a positive
quasi-Cartan companion is in NP. A problem belongs to NP class of problems if there exists a
non-deterministic Turing machine of a unique tape that decides it in polynomial time, that is,
problems in NP are those can be verified in polynomial time. Since there is an exponential num-
ber of quasi-Cartan companions, we conjecture that the decision problem is in NP-complete. We
also sharpen the bounds on the entries of a positive quasi-Cartan matrix given by Barot, Geiss
and Zelevinsky [1] and highlight specific cases where we always have a positive quasi-Cartan
companion or where one can easily verify this fact. The paper ends with our conclusions in
Section 5.

2 PRELIMINARIES

In this paper, we consider square matrices with integer entries, except the matrix D that will be
introduced later. Let n be a positive integer, A, B, C ∈ Mn(Z) and D ∈ Mn(R). A matrix A
is symmetric if A = AT , where AT is the transpose of A. A matrix C is symmetric by signs if
for all i, j ∈ {1, . . . , n}, with i �= j , we have ci j = c ji = 0 or ci j · c ji > 0. A matrix C is
symmetrizable if DC is symmetric for some diagonal matrix D with positive diagonal entries.
In this case, the matrix DC is called symmetrization or symmetrized of C and the matrix D
is called symmetrizer of C. Note that this definition of symmetrizable is equivalent to the one
given in [4] and that it is not unique.

The matrix A is termed skew-symmetric if its transpose coincides with its opposite (AT = −A),
i.e., ai j = −a ji , for all i, j . Observe that the values of the main diagonal are null. The matrix
B is termed skew-symmetric by signs if for all i, j ∈ {1, . . . , n} we have bii = 0 and if i �= j ,
then bi j = b ji = 0 or bi j · b ji < 0. The matrix B is skew-symmetrizable if there exists a
diagonal matrix D with positive entries such that DB is a skew-symmetric matrix. In this case,
the matrix DB is called askew-symmetrization or skew-symmetrized of B and the matrix D is
called a skew-symmetrizer of B.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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We observe that every symmetric matrix is symmetrizable and that every skew-symmetric matrix

is skew-symmetrizable. Also observe that all symmetrizable matrices are symmetric by signs and
all skew-symmetrizable matrices are skew-symmetric by signs.

A symmetrizable matrix is quasi-Cartan if all the entries of its main diagonal are equal to 2. For
a skew-symmetrizable matrix B, we shall refer to a quasi-Cartan matrix C with |ci j | = |bi j | for

all i �= j as a quasi-Cartan companion of B.

Given a skew-symmetrizable matrix B, we want to find a positive quasi-Cartan companion of B.
For this, we use Sylvester’s criterion and need the following notations and definitions.

For any matrix A, we denote as A[i j ] the matrix obtained by the elimination of the ith row and
the j th column of matrix A. The i j th minor of A is the determinant of A[i j ] . Recall that the de-

terminant of A can be recursively defined in terms of its minors. More generally, a principal sub-
matrix of A is a submatrix of A obtained by eliminating some rows and respective columns of A.
The principal minors of A are the determinants of the principal submatrices of A. The lead-

ing principal minors are the determinants of the diagonal blocks of a matrix M with dimension
1, 2, . . . , n. These submatrices, also called leading principal matrices, are obtained by eliminat-
ing the last k columns and k rows of A, with k = n − 1, n − 2, . . . , 0.

In Section 4, we shall use the concept of a connected matrix defined below.

For any arbitrary matrices A of dimension m × n and B of dimension p × q , we define the direct
sum of A and B, denoted by

A ⊕ B =
[

A 0
0 B

]
.

Note that any element in the direct sum of two vector spaces of matrices can be represented as
the direct sum of two matrices.

A permutation matrix is a square binary matrix that has exactly one unit entry in each row
and each column and zeros elsewhere. Each such matrix represents a specific permutation of

n elements and, when used to multiply another matrix, it will produce a permutation of the rows
or columns of the other matrix.

Let A be a square matrix. We say that A is disconnected if there exists P, a permutation matrix,
such that P AP is a direct sum of at least two non-zero matrices. If not, we say A is connected.

Observe that P AP is obtained from A by a permutation of the rows and respective columns of
A. Moreover, A is connected if, and only if, the graph associated with the adjacency matrix A is
connected. More information on the properties of matrices is given in [9].

3 SYMMETRIZABLE AND SKEW-SYMMETRIZABLE MATRICES

In this section, we report some properties of symmetrizable and skew-symmetrizable matrices.
We also present two algorithms for symmetrizable matrix.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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The following proposition demonstrates that all possible symmetric by signs matrices are quasi-

Cartan companions and thus, there is an exponential number of such matrices since a quasi-
Cartan companion of a matrix B is specified by choosing the signs of its off-diagonal matrix
entries, with the only requirement being that sgn(ci j ) = sgn(c ji ) and |ci j | = |bi j | for all i �= j .

Theorem 3.1. Let B be a skew-symmetrizable matrix. Consider a matrix C such that

|ci j | = |bi j |, for all i �= j . If C is symmetric by signs, then C is symmetrizable with the same
symmetrizer as that of B. Furthermore, if cii = 2, for all i, then C is a quasi-Cartan companion
of B.

Proof. Let

D =

⎛
⎜⎜⎝

d1

. . .

dn

⎞
⎟⎟⎠

be a symmetrizer matrix of B. Then we have that di · |ci j | = di · |bi j | = |di · bi j | = |d j · b ji | =
d j · |b ji | = d j · |c ji |. Since ci j and c ji have the same sign, we have that di · ci j = d j · c ji . �

Next result for symmetrizable matrices is similar to the result in [7](Lemma 7.4) for skew-
symmetrizable matrices.

Lemma 3.1. A matrix C = (ci j ), of order n, is symmetrizable if and only if it is symmetric by
signs and for all k ≥ 3 and all i1, i2, . . . , ik ∈ {1, . . . n} it satisfies:

ci1 i2 · ci2 i3 · . . . · cik i1 = ci2 i1 · ci3 i2 · . . . · ci1 ik .

We now present two algorithms: one for deciding whether any given square matrix of order n has

a symmetrizer and, if it exists, returns it with time complexity �(n2). Another one for finding
symmetrizer matrix for a symmetrizable matrix with time complexity �(n2) in the worst case
and �(n) in the best case. Since the first algorithm has time complexity �(n2) if we know that

a given matrix is symmetrizable using Algorithm 2 is more suitable than Algorithm 1.

Observe that we do not have a unique symmetrizer for a symmetrizable matrix. For the sake of
simplicity, we shall calculate a symmetrizer with positive values and rational entries.

It is important to observe that there exist algorithms that use breadth first strategy to decide
whether or not there exists a symmetrizer matrix or not. Our algorithm solves the same problem

and presents such symmetrizer.

Note that if A is connected, then we effectuate line 8 only once.

Proposition 3.1. Algorithm 1 is correct.

Proof. At the beginning of any iteration of the “while loop”, dii · ai j = d j j · a ji for any j /∈ T
and any i. This is clearly true since at the beginning of the algorithm there is no j and afterwards

Tend. Mat. Apl. Comput., 17, N. 2 (2016)



�

�

“main” — 2016/9/1 — 14:14 — page 191 — #5
�

�

�

�

�

�

DIAS, CASTONGUAY and DOURADO 191

Algorithm 1: SymmetrizableMatrix(A)

Input: A square matrix A of order n.
Output: A pronouncement as to whether A is symmetrizable or not; and, if

it exists, a symmetrizer of A, a diagonal matrix D = dii of positive
values, such that DA is symmetric.

1 foreach i ∈ {1, . . . , n} do
2 dii ← 0

3 T ← {1, . . . , n} ordered list
4 while T �= ∅ do
5 i ← the first element of T
6 T ← T \ {i}
7 if dii = 0 then
8 dii ← 1

9 foreach j ∈ T do
10 if aij · aji = 0 then
11 if aij + aji �= 0 then
12 return NO

13 else
14 move j to the first position of T
15 if djj �= 0 then
16 if dii · aij �= djj · aji then
17 return NO

18 else
19 djj ← dii·aij

aji

20 return YES, D

that j /∈ T will have been passed to the “while loop” without the return NO. Therefore, if the
algorithm returns D, we have that dii · ai j = d j j · a ji for any pair of different parameters i and j .

Suppose the algorithm returns NO when A is symmetrizable. Since A is symmetrizable, the
algorithm returns NO on line 17 and therefore there exist i and j such that dii · ai j �= d j j · a ji .

Let T be the list < i1, . . . , it > at the beginning of the “while loop”. It follows from line 14,

that the first indices � of T have d�� �= 0 and the last ones have d�� = 0, that is there ex-
ists k ∈ {0, . . . , t} such that dis is �= 0 for all 1 ≤ s ≤ k and dis is = 0 for all k < s ≤ t .
Observe that k = 0 implies that d�� = 0, for all � ∈ T . Since i is the first element in T

(line 5) and d j j �= 0 (line 15), we have that dii �= 0 at the beginning of the “while loop”.
Therefore, dii and d j j have been defined before and there exist k ≥ 3, i1 = i, i2 = j and
i3, . . . , ik /∈ T such that ai1i2 · ai2i3 · . . . · aik i1 �= 0. Since A is symmetrizable, we have by

Lemma 3.1, that ai1i2 ·ai2i3 · . . . ·aik i1 = ai2i1 ·ai3i2 · . . . ·ai1ik . This implies that dii ·ai j = d j j ·a ji ,
a contradiction. �

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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192 ALGORITHMS AND PROPERTIES FOR POSITIVE SYMMETRIZABLE MATRICES

Next algorithm does essentially the same as the above. The difference is that it does not verify if

A is symmetrizable but assume it and ends as soon as it have calculated all dii .

Algorithm 2: SymmetrizerMatrix(A)

Input: A symmetrizable matrix A of order n.
Output: A diagonal matrix D = dii of positive values such that DA is

symmetric.

1 foreach i ∈ {1, . . . , n} do
2 dii ← 0

3 S ← {1, . . . , n}
4 T ← {1, . . . , n} ordered list
5 while S �= ∅ do
6 i ← the first element of T
7 T ← T \ {i}
8 if dii = 0 then
9 dii ← 1

10 S ← S \ {i}
11 foreach j ∈ T do
12 if aji �= 0 then
13 move j to the first position of T
14 if djj = 0 then
15 djj ← dii·aij

aji

16 S ← S \ {j}

17 return D

Proposition 3.2. Algorithm 2 is correct.

Proof. The behavior of Algorithm 2 is quite similar to that of Algorithm 1. The differences are
that Algorithm 2 does not check whether A is symmetrizable or not and the use of an additional

list S which maintains the elements i such that dii = 0 is not defined yet. Since the algorithm
assumes that the input matrix A is symmetrizable, this enables termination when all elements of
D have already been defined. This control is done by changing the condition of the “while loop”

(line 5) accordingly and adding the operation to remove element i from S whenever dii is defined
(lines 10 and 16). �

4 POSITIVE QUASI-CARTAN COMPANION

A symmetric matrix A is positive definite if xT · A · x > 0 for all vectors x of length n, with

x nonzero. If a symmetrized matrix DC is positive definite, then we say that the quasi-Cartan
matrix C is positive. By Sylvester’s criterion [3], being positive definite means that the principal
minors of DC are all positive.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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The following theorem is a generalization of Sylvester’s criterion.

Theorem 4.1. Let C be a symmetrizable matrix. The following conditions are equivalent:

(a) C is positive.

(b) All principal minors of C are positive.

(c) All leading principal minors of C are positive.

Proof. Let D be a symmetrizer matrix of C. Observe that (DC)[ii] = D[ii] × C[ii] . Thus,
det ((DC)[ii] ) = det (D[ii]) × det (C[ii]) = d1 · . . . · di−1 · di+1 . . . dn · det (C[ii]).

Since di > 0 for all i, we have that det (C[ii]) > 0 if and only if det ((DC)[ii] ) > 0. Using

induction, the result follows because principal matrices are obtained recursively in this way. �

The following proposition shows that the property of having a positive quasi-Cartan companion

is preserved for principal submatrices. This result leads intuitively to an inductive solution.

Proposition 4.1. If B is a skew-symmetrizable matrix then B has a positive quasi-Cartan
companion matrix if and only if any principal submatrix of B has a positive quasi-Cartan
companion.

Proof. (⇒) Let C be a positive quasi-Cartan companion of B. For induction, we need only that

C[ii] is a symmetrizable matrix and therefore a positive quasi-Cartan companion of B[ii] . Since
(DC)[ii] = D[ii] × C[ii] is symmetric, we have that C[ii] is a symmetrizable matrix. Similarly,
B[ii] is skew-symmetrizable.

It follows from Theorem 4.1 that C[ii] is positive. Therefore, C[ii] is a positive quasi-Cartan

companion of B[ii] .

(⇐) It follows from the fact that the matrix B is a principal submatrix of itself. �

Verifying all quasi-Cartan companions is exponential since if B is a skew-symme-trizable matrix
of order n then it has O(2n2

) matrices C which are quasi-Cartan companions of B. Note that a
quasi-Cartan companion of B is specified by choosing the signs of its off-diagonal matrix entries,

with the only requirement being that sgn(ci j ) = sgn(c ji ) and |ci j | = |bi j | for all i �= j .

From Theorem 4.1, one obtains a naive algorithm with time complexity �(n4) to decide whether
the given matrix C is positive. One can also prove by induction that the Gaussian elimination
can be directly applied to the symmetrizable matrix instead of its symmetrized matrix, which

will leads to an algorithm with time complexity �(n3).

The NP class consists of the decision problems for which a “yes” certificate can be checked in
polynomial time. A decision problem π is said to be NP-complete if every problem of NP can
be polynomially reduced to π . For more information about polynomial reductions and the P, NP,

Tend. Mat. Apl. Comput., 17, N. 2 (2016)



�

�

“main” — 2016/9/1 — 14:14 — page 194 — #8
�

�

�

�

�

�

194 ALGORITHMS AND PROPERTIES FOR POSITIVE SYMMETRIZABLE MATRICES

and NP-complete classes, see [5, 10]. Any of the algorithms presented above can be used as a

verifier and, thus, we have proved that the problem of deciding whether there exists a positive
quasi-Cartan companion belongs to NP. We also conjecture that this problem is NP-complete.

The following lemma gives a necessary condition for a quasi-Cartan companion to be positive.
We present the main ideas of the original proof of this lemma, since they are useful in the sequel.

Lemma 4.1. (Barot, Geiss and Zelevinsky [1])
Let C be a positive quasi-Cartan matrix. Then

(a) 0 ≤ ci j · c ji ≤ 3 for any i, j such that i �= j .

(b) cik · ckj · c ji = cki · c jk · ci j ≥ 0 for any pairwise different i, j, k.

Proof.

(a) Let C′ =
(

2 ci j

c j i 2

)
be a principal submatrix of C. Since C is a symmetrizable matrix,

it is symmetric by signs and ci j ·c ji ≥ 0. Since C is positive, then det (C′) = 4−ci j ·c ji >

0. Therefore, ci j · c ji ≤ 3.

Since C is symmetrizable, we have that sgn(ci j ) = sgn(c ji ).

(b) Let cik · ckj · c ji �= 0. Since that C is symmetrizable, from Lemma 3.1, one can see that
cki · c jk · ci j = cik · ckj · c ji . The condition of positivity of the 3 × 3 principal minors of

C in the rows and columns i, j, k can be rewritten as:

cik · ckj · c ji > ci j · c ji + cik · cki + c jk · ckj − 4 (4.1)

Since cik · ckj · c ji �= 0 we have that |cst | ≥ 1 and thus cst · cts ≥ 1 for (s, t) ∈
{(i, k), (k, j ), ( j, i)}. Therefore, cik · ckj · c ji > 3 − 4 = −1. The result follows. �

Condition (a) is obtained by studying submatrices of order 2. We shall sharpen this limit by
studying submatrices of order 3. We observe that for a positive quasi-Cartan matrix of order 3

we have three leading principal submatrices:

(i) a submatrix of order 1 (that obviously has a positive determinant);

(ii) a submatrix of order 2 (that must be positive due Lemma 4.1, with 0 ≤ ci j · c ji ≤ 3); and,

finally,

(iii) C itself (which is the submatrix of order 3).

Definition 4.1. C+ = (c+
i j ) such that c+

i j = |bi j | and c+
ii = 2.

Proposition 4.2. If B is a skew-symmetrizable matrix of order 3 then B has a positive quasi-
Cartan companion if and only if the matrix C+ = (c+

i j ) is positive.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Proof. (⇒) Suppose there exists a positive quasi-Cartan companion matrix C. Clearly, 0 ≤
c+

i j · c+
j i ≤ 3. Thus, using Lemma 4.1,

det (C+) = 8 − 2 · c+
jk · c+

kj − 2 · c+
i j · c+

j i − 2 · c+
ki · c+

ik + 2 · c+
i j · c+

jk · c+
ki

= 8 − 2 · c jk · ckj − 2 · ci j · c ji − 2 · cki · cik + 2 · |ci j · c jk · cki |
≥ det (C) > 0.

Since all leading principal minors of C+ are positive, we have that C+ is also a positive quasi-
Cartan companion of B.

(⇐) Since C is a quasi-Cartan matrix, it follows from Theorem 3.1 that C+ is a quasi-Cartan
companion of B. �

In the following results, we sharpen the bound in Lemma 4.1. Firstly, we examine the case n = 3.

Lemma 4.2. Let C be a positive quasi-Cartan matrix of order 3.

(a) If C is connected, then 0 ≤ ci j · c ji ≤ 2 for any i, j such that i �= j .

(b) 0 ≤ c12 · c23 · c31 = c13 · c32 · c21 ≤ 2.

Proof. Proposition 4.2 shows that det (C+) > det (C). Thus, C+ is positive. For the sake of

simplicity, suppose that C = C+ .

(a) By Lemma 4.1, 0 ≤ ci j · c ji ≤ 3. Suppose, without loss of generality, that c12 = 3. Then,
c21 = 1 and det (C) = 8 + 2 · c12 · c23 · c31 − 2 · c12 · c21 − 2 · c13 · c31 − 2 · c23 · c32 =
2 + 6 · c23 · c31 − 2 · c13 · c31 − 2 · c23 · c32 > 0.

Since C is connected, c23 �= 0 or c31 �= 0. The positivity of C implies that both c23 and

c31 are non zero. Recall that since C is symmetrizable, we have that c32 �= 0 and c13 �= 0.

Since c12 · c23 · c31 = c21 · c32 · c13, we have either that 3 · c23 · c31 = c32 · c13 and c32 = 3
or c13 = 3. By symmetry, suppose that c32 = 3. Then, c23 = 1 and c31 = c13. Since
(c13)

2 = c13 · c31 ≤ 3, we conclude that c31 = c13 = 1.

On the other hand, det (C) = 2+6 ·c23 ·c31 −2 ·c13 ·c31 −2 ·c23 ·c32 = 2+6−2−6 = 0.
This yields a contradiction to the positivity of C.

Therefore, ci j · c ji ≤ 2, for all i, j .

(b) Suppose that c12 · c23 · c31 = c13 · c32 · c21 ≥ 3. If c12 · c21 = 3, using the contrapositive
of (a) above, we have that c23 = 0 and c31 = 0. A contradiction to the hypothesis. This

implies that c12·c21 ≤ 2. In the same way, we obtain that ci j ·c ji ≤ 2 for all i, j . Therefore,
c12 · c23 · c31 ≥ 4. We can suppose, without loss of generality, that c12 = 2 and c23 = 2.
Thus, c21 = 1 and c32 = 1 and we obtain that c13 = 4 and c31 �= 0 a contradiction to

Lemma 4.1. Therefore, 0 ≤ c12 · c23 · c31 ≤ 2. �

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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We generalize Lemma 4.2 to account for any n ≥ 3.

Theorem 4.2. Let C be a positive quasi-Cartan matrix of order n, with n ≥ 3.

(a) If C is connected, then 0 ≤ ci j · c ji ≤ 2 for all i, j .

(b) 0 ≤ cik · ckj · c ji ≤ 2 for all pairwise different i, j, k.

Proof. (a) Suppose that exist i, j such that ci j · c ji ≥ 3. Since n ≥ 3, there exists k /∈ {i, j }.
Consider the principal submatrix C′ of C, consisting of the rows and columns i, j and k. By

Lemma 4.2, C′ is disconnected. This implies that cik = ckj = 0 and thus cki = c jk = 0. Since
this is true for all k /∈ {i, j }, we have that C is disconnected, a contradiction.

(b) It follows from Lemma 4.2 by considering the principal submatrix of C, consisting of the
rows and columns i, j and k. �

As is shown in Theorem 4.3 below, when the skew-symmetrizable matrix has no zero entries, we

only need to analyze the matrix C+ defined in 4.1.

Theorem 4.3. If B is a skew-symmetrizable matrix such that bi j �= 0, for i �= j , then B has a
positive quasi-Cartan companion if and only if C+ = (c+

i j ) defined by c+
i j = |bi j | and c+

ii = 2 is
positive.

Proof. (⇒) Suppose there exists a positive quasi-Cartan companion C. We shall show by in-

duction that C+ is positive. If C is 2 × 2 matrix, the result is clearly obtained. First, we show
that det (C+) > 0. Let xi j = sgn(ci j ). Observe that x ji = xi j and xii = 1 due to it to being a
quasi-Cartan matrix. Since ci j �= 0 there is no ambiguity in this definition. Define xi = x1i for

all i. We shall show, by induction on i, that xi j = xi · x j for all i, j . Clearly, xii = (xi )
2.

Since x1 = 1, we clearly have that x1i = x1 · xi . Suppose that xkj = xk · x j for all k < i. By
Theorem 4.2, ci j · c jk · cki > 0. Thus, xi j · x jk · xki = 1. Therefore, xi j = x jk · xki = xkj · xki =
xk · x j · xk · xi = xi · x j .

Since xi j = xi · x j and ci j = xi j · c+
i j , we have that C = XC+ X where:

X =

⎛
⎜⎜⎝

x1 0
. . .

0 xn

⎞
⎟⎟⎠

It follows that det (C) = det (X) · det (C+) · det (X) = det (C+). By induction on the dimension

of C+ , we have that all leading principal minors of C+ are positive.

(⇐) It follows from the fact that C is quasi-Cartan matrix and by Theorem 3.1, that C+ is a
quasi-Cartan companion of B. �
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We observe that Theorem 4.3 does not hold for all skew-symmetrizable matrices, as we can be

seen in the following example:

Let B =

⎛
⎜⎜⎜⎝

0 1 1 0
1 0 0 1
1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎠, C =

⎛
⎜⎜⎜⎝

2 −1 1 0
−1 2 0 1
1 0 2 1

0 1 1 2

⎞
⎟⎟⎟⎠, C+ =

⎛
⎜⎜⎜⎝

2 1 1 0
1 2 0 1
1 0 2 1

0 1 1 2

⎞
⎟⎟⎟⎠.

The quasi-Cartan companion C+ is not positive, but C is positive.

The following case always has a positive quasi-Cartan companion.

Proposition 4.3. If B is the skew-symmetric matrix defined by |bi j | = 1 for all i �= j , then B has
a positive quasi-Cartan companion.

Proof. If B is a matrix of order n, then we can calculate that det (C+) = n + 1. Clearly, C+ is
positive. The result follows from Theorem 4.3. �

5 CONCLUSIONS

In this paper, we report some theoretical advances for the problem of deciding upon the exis-
tence of a positive quasi-Cartan companion for skew-symmetrizable matrices. We show that this
decision problem is in NP and conjecture that it is NP-complete.
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RESUMO. Grafos são comumente representados por matrizes que também são usadas para

representar álgebras e álgebras cluster. Este artigo mostra algumas propriedades de matrizes,

a fim de facilitar a compreensão das matrizes simetrizáveis com caracterı́sticas especı́ficas,

chamadas matrizes companheiras quase-Cartan posi-tivas, e o problema de localizá-las. Neste

contexto, matrizes simetrizáveis são aquelas que são simétricas quando multiplicadas por uma

matriz diagonal com entradas positivas chamada matriz simetrizante. Conjecturamos que este

problema é NP-completo e nós mostramos que ele está em NP generalizando o critério de

Sylvester para matrizes simetrizáveis. Nós estreitamos os limites dos coeficientes conhecidos

para tais matrizes.

Palavras-chave: matriz simetrizável, companheira quase-Cartan, algoritmo.
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