
TEMA Tend. Mat. Apl. Comput., 11, No. 3 (2010), 193-203.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

Methods to Accelerate a Competitive Learning

Algorithm Applied to VQ Codebook Design

E.L. BISPO JR1, Universidade de São Paulo, 05508-090, São Paulo, SP, Brasil.

C.R.B. AZEVEDO2, Universidade Federal de Pernambuco, 50740-540, Recife,
PE, Brasil.

W.T.A. LOPES3, M.S. ALENCAR4, Universidade Federal de Campina Grande,
58109-970, Campina Grande, PB, Brasil.

F. MADEIRO5, Universidade Católica de Pernambuco, 50050-900, Recife,
PE, Brasil.

Abstract. Codebook design plays a crucial role in the performance of signal pro-
cessing systems based on vector quantization (VQ). This paper is concerned with
methods for reducing the processing time spent by a competitive learning (CL)
algorithm applied to VQ codebook design. Using analytical expressions for the
number of operations (multiplications, additions, subtractions and comparisons)
performed by the CL algorithm, it is shown that almost all the operations are due
to the nearest neighbor search (NNS). Simulation results regarding image VQ show
that simple modifications introduced in CL lead to considerable number clock cycles
savings.

Keywords. Vector Quantization, Competitive Learning, Nearest Neighbor Search.

1. Introduction

Vector quantization (VQ) [5,6] has been widely used in signal compression [1,4,11].
It may be defined as a mapping Q from an input vector x belonging to the K-
dimensional Euclidean space, RK , into a vector belonging to a finite subset W of
R

K , that is, Q : RK → W .

The codebook W = {wi; i = 1, 2, . . . , N} is the set of codevectors (reconstruc-
tion vectors), K is the dimension of the codevectors and N is the codebook size.
The mapping Q leads to a partitioning of RK in N non-intercepting cells (Voronoi

1bispojr@ime.usp.br.
2crba@cin.ufpe.br.
3waslon@ieee.org
4malencar@iecom.org.br
5madeiro@dei.unicap.br

Recebido em 04 Maio 2009; Aceito em 30 Dezembro 2010.



194 Bispo Jr, Azevedo, Lopes, Alencar e Madeiro

regions) Si, i = 1, 2, . . . , N , such that Si = {x : Q(x) = wi} = {x : d(x,wi) <
d(x,wj), ∀j 6= i}, in which d(·) is a distortion measure.

The code rate, which measures the number of bits per vector component, is
given by R = 1

K
log2 N . In image coding, R is expressed in bits per pixel (bpp).

The purpose of the techniques for codebook design is to reduce (for a given
rate R) the distortion introduced when the input vectors x are represented by their
corresponding quantized versions Q(x). The Linde-Buzo-Gray (LBG) algorithm [9]
is the most widely used technique for codebook design. In the literature, a number
of unsupervised learning algorithms has been applied to codebook design [3, 7, 8].

This paper presents two methods to reduce the time spent by a competitive
learning (CL) algorithm in the process of VQ codebook design. Using analytical
expressions for the number of operations (multiplications, additions, subtractions
and comparisons) performed by the competitive algorithm, it is shown that almost
all the operations are due to the nearest neighbor search (NNS). In other words,
the determination of the winner consumes almost all the operations of the CL
algorithm. Simulations results regarding image VQ show that considerable number
of clock cycles savings can be obtained by simple modifications in the CL algorithm.

2. Computational Complexity of the VQ

In VQ the computational complexity of the minimum distortion encoding phase is
a relevant problem. For encoding an input vector, the encoder must determine its
distance to each of the N codevectors and must compare the distances in order to
find the codevector closest to the input vector, that is, the nearest neighbor. In the
conventional full search (FS) method, the encoding of an input vector requires N

distance (distortion) computations and N−1 comparisons. When using the squared
Euclidean distortion, that is,

d(x,wi) =

K∑

j=1

(xj − wij)
2, (2.1)

in which wij is the j-th component of the codevector wi and xj is the j-th compo-
nent of the input vector x, each distance computation requires K multiplications,
K subtractions and K − 1 additions. Thus, to encode each input vector, KN mul-
tiplications, KN subtractions, (K − 1)N additions and N − 1 comparisons must be
computed.

2.1. PDS algorithm

The partial distance search (PDS) algorithm, proposed by Bei and Gray in [2], is a
method for reducing the computational complexity of the nearest neighbor search
(encoding phase). In the PDS algorithm, the encoder takes the decision before
completing the computation of the distance between the input vector (vector to be
encoded) and a codevector.



Accelerating a Competitive Learning Algorithm 195

The encoder decides that a codevector is not the nearest neighbor if, for some
j < K, the accumulated distance (that is, the partial distance) for the first j sam-
ples of the input vector is greater than the smallest distance previously computed in
the search. Then, the encoder stops the distance computation for that codevector
and starts the distance computation for the next codevector. With this approach,
the number of multiplications per sample is dramatically reduced. The PDS algo-
rithm also leads to a reduction in the number of subtractions/additions per sample.
Although PDS increases the number of comparisons, the global complexity of the
nearest neighbor search is reduced.

The basic structure of the PDS algorithm is presented in Figure 1(a), in which
dist denotes the distance (distortion), distmin denotes the minimum distance (that
is, the smallest distance previously found), xj is the j-th component of the K-
dimensional input vector x and wij is the j-th component of the i-th codevector
wi ∈ R

K , i = 1, · · · , N .

2.2. Torres-Huguet algorithm

Another method for reducing the computacional complexity of NNS is Torres-
Huguet algorithm [12] which is discussed as follows. The Euclidean distance (see

Equation 2.1) can be written as d(x,wi) = ‖x‖2 + ‖wi‖
2 − 2

K∑
j=1

xjwij .

In Torres-Huguet method, ‖wi‖
2 (1 ≤ i ≤ N) is precalculated and stored.

The term
K∑
j=1

xjwij is upper bounded as
K∑
j=1

xjwij ≤ xmax

K∑
j=1

wij (for xj ≥ 0

and yj ≥ 0), in which xmax is the maximum vector component of vector x. In

Torres-Huguet,
K∑
j=1

wij is also calculated and stored. Hence, Torres-Huguet defines

an auxiliar distance

d1(x,wi) = ‖x‖2 + ‖wi‖
2 − 2xmax

K∑

j=1

wij . (2.2)

It is seen that d1(x,wi) ≤ d(x,wi). Additionaly, d1(x,wi) requires a smaller
number of arithmetic operations when compared to d(x,wi). The algorithm is
described in Figure 1(b).

3. Competitive Learning Algorithm

Let ntot be the number of iterations (number of entire passages of the training set) of
the competitive learning algorithm. Let M be the number of training vectors. After
an initialization of the VQ codebook (that is, after initializing the K components of
the N weight vectors), the competitive learning (CL) algorithm may be described
as follows.



196 Bispo Jr, Azevedo, Lopes, Alencar e Madeiro

distmin = ∞; (a very large num-
ber)
for 1 ≤ i ≤ N

dist = 0;
for 1 ≤ j ≤ K

dist = dist+ (xj −wij)
2;

if (dist > distmin)
break;

next j;
if(dist < distmin)

index = i;
distmin = dist;

next i;
(a) PDS algorithm.

Evaluate and store ‖wi‖
2 of

every codevector;

Evaluate and store 2
K∑
j=1

wij of

every codevector;

Evaluate xmax;
distmin = ∞;
for 1 ≤ i ≤ N

dist = d1(x,wi);
if(dist > distmin) continue;
dist = d(x,wi);
if(dist > distmin) continue;
index = i; (codevector

selected wi)
distmin = dist;

next i;
(b) Torres-Huguet algorithm.

Figure 1: Algorithms for nearest neighbor search.

In the CL algorithm (Figure 2), x(m) is the m-th vector from the training set,
while wi(n,m) and wi∗(n,m) denote, respectively, the i-th codevector and the
winner for the m-th training vector in the n-th iteration.

In the description of the algorithm,

d[x(m),wi(n,m)] =

K∑

j=1

[xj(m)− wij(n,m)]2 (3.1)

is the Euclidean distance between the vectors x(m) and wi(n,m), in which xj(m)
is the j-th component of vector x(m) and wij(n,m) is the j-th component of vector
wi(n,m). In the winner updating expression, ∆wi∗j is the modification introduced
in the j-th component of the winner, η(n) is the learning rate or adaptation gain
in the n-th iteration (with 0 < η(n) < 1), wi∗j is the j-th component of the winner
and w̃i∗j is the updated version of the j-th component of the winner.

The learning rate decreases linearly as the iteration n increases and is kept
constant during each iteration, that is, during each entire passage of the M training

vectors. It is expressed as η(n) = η(1)+(n−1)η(ntot)−η(1)
ntot−1 , in which η(1) and η(ntot)

denote two parameters of the competitive algorithm: the initial learning rate and
the final learning rate, respectively. The other parameters are K (dimension), N
(codebook size) and ntot (number of iterations).



Accelerating a Competitive Learning Algorithm 197

for 1 ≤ n ≤ ntot

for 1 ≤ m ≤ M

find the winner wi∗(n,m):

i∗ = argmin
i

d[x(m),wi(n,m)];

update the winner according to

w̃i∗j(n,m) = wi∗j(n,m) + ∆wi∗j(n,m), (3.2)

in which

∆wi∗j(n,m) = η(n)[(xj(m)− wi∗j(n,m)]. (3.3)

Figure 2: CL algorithm.

4. Computational Load of NNS in CL Algorithm

A detailed analysis of the computational complexity of the CL algorithm is presented
in [10]. Tables 1 and 2 summarize the expressions for the number of multiplications,
additions, subtractions and comparisons performed by the algorithm.

This section examines the computational load of the NNS (which corresponds to
the search for the winner) in the CL algorithm. For each operation (multiplication,
subtraction, addition, comparison), the computational load of the NNS is

Load =
#NNS

#TOT
, (4.1)

in which #NNS and #TOT denote, respectively, the number of operations per-
formed in the nearest neighbor search (see Table 1, determination of the winner)
and the total number of operations performed by the CL algorithm (see Table 2).

Table 1: Datailed description for the number of operations required by the CL
algorithm.

Operation Determination Updating Computation

of the winner of the winner of the learning rate

mult. KNMntot KMntot ntot − 1
sub. KNMntot KMntot ntot + 1
ad. (K − 1)NMntot KMntot ntot − 1

comp. (N − 1)Mntot - -
div. - - 1

Hence, the computational load of the number of multiplications is

Load(mul) =
KNMntot

[1 + (1 +N)KM ]ntot − 1
. (4.2)



198 Bispo Jr, Azevedo, Lopes, Alencar e Madeiro

Table 2: Analytical expressions for the number of multiplications, subtractions,
additions, divisions and comparisons used by the CL algorithm.

Operation Analytical expression

mult. [1 + (1 +N)KM ]ntot − 1
sub. [1 + (1 +N)KM ]ntot + 1
ad. [1 + (K − 1)NM +KM ]ntot − 1
div. 1

comp. (N − 1)Mntot

Typical codebook design uses sufficiently large training sets. In other words,
high values of M are considered in practical codebook design. Thus, [1 + (1 +
N)KM ]ntot ≫ 1. Hence, Load(mul) ≈ KNMntot

[1+(1+N)KM ]ntot

. Observing that [1 + (1 +

N)KM ]ntot ≈ (1 + N)KMntot, it follows that Load(mul) ≈ N
1+N

. It is observed
that Load(mul) goes to 1 as N increases.

The computational load of the number of subtractions is given by

Load(sub) =
KNMntot

[1 + (1 +N)KM ]ntot + 1
. (4.3)

In practical codebook design, sufficiently large training sets (large M) are used.
As a consequence, [1+(1+N)KM ]ntot ≫ 1. Thus, Expression (4.3) can be written
as Load(sub) ≈ KNMntot

[1+(1+N)KM ]ntot

. Since [1 + (1+N)KM ]ntot ≈ (1 +N)KMntot, it

follows that Load(sub) ≈ N
1+N

. Thus, Load(sub) goes to 1 as N increases.
The computational load of the number comparisons is given by

Load(comp) =
(N − 1)Mntot

(N − 1)Mntot
. (4.4)

Hence, 100% of the comparisons performed by the CL algorithm are due to the
nearest neighbor search.

The computational load of the number of additions is given by

Load(add) =
(K − 1)NMntot

[1 + (K − 1)NM +KM ]ntot − 1
. (4.5)

For practical codebook design (for large M), it follows that [1 + (K − 1)NM +

KM ]ntot− 1 ≈ [1+ (K− 1)NM +KM ]ntot. Then, Load(add) ≈ (K−1)NM

1+(K−1)NM+KM
.

Since 1 + (K − 1)NM +KM ≈ (K − 1)NM +KM , one has

Load(add) ≈
(K − 1)N

(K − 1)N +K
. (4.6)

As an example, for K = 16 and N = 32 the computational load of additions is
99.79%. For typical values of K in image coding, it is observed that the computa-
tional load of additions goes to 100% as N increases.



Accelerating a Competitive Learning Algorithm 199

5. Incorporating Fast NNS into the CL Algorithm

It was shown in the previous section that almost all the operations performed by the
CL algorithm are due to the NNS. The CL algorithm performs NNS to determine
the winner. Therefore, the execution time of the CL algorithm can be reduced if fast
NNS methods, such as PDS or Torres-Huguet, are incorporated with the purpose
of winner determination, in substitution to the conventional full-search (exhaustive
search).

It is seen in Figure 3(a) how PDS is incorporated to the CL algorithm. In
Figure 3(b), one can see Torres-Huguet incorporated to the CL algorithm. It is

worth mentioning that ‖windex‖
2 and 2

K∑
j=1

windex, j (in which index is the winner

vector index) must be calculated every time the winner is determined, that is, each
time a training vector is presented

for 1 ≤ n ≤ ntot

for 1 ≤ m ≤ M

distmin = ∞;
for 1 ≤ i ≤ N

dist = 0;
for 1 ≤ j ≤ K

dist = dist+ (xj − wij)
2;

if(dist > distmin)
break;

next j;
if(dist < distmin)

index = i; (wi selected)
distmin = dist;

next i;
update the winner (windex);

next m;
next n;

(a) PDS incorporated to CL.

Evaluate and store ‖wi‖
2 of every

codevector;

Evaluate and store 2
K∑
j=1

wij of every

codevector;

for 1 ≤ n ≤ ntot

for 1 ≤ m ≤ M

Evaluate xmax;
distmin = ∞;
for 1 ≤ i ≤ N

dist = d̃1(x,wi);
if(dist > distmin) continue;
dist = d̃(x,wi);
if(dist > distmin) continue;
index = i; (wi selected)
distmin = dist;

next i;
update the winner (windex);
Evaluate and replace ‖windex‖

2;

Evaluate and replace 2
K∑
j=1

windex, j ;

next m;
next n;

(b) Torres-Huguet incorporated to CL.

Figure 3: PDS and Torres-Huguet incorporated to CL.

It is necessary to emphasize that d(x,wi) and d1(x,wi) are modified in al-
gorithm of Figure 3(b). Since the term ‖x‖2 depends only on the input vec-
tor x, it does not need to be computed. The modified d(x,wi) is d̃(x,wi) =



200 Bispo Jr, Azevedo, Lopes, Alencar e Madeiro

‖wi‖
2−2

K∑
j=1

xjwij and the modified d1(x,wi) is d̃1(x,wi) = ‖wi‖
2−2xmax

K∑
j=1

wij .

6. Results

The following results concern codebook design using a training set corresponding to
the Lena image (512×512 pixels). Vector quantization with K = 16 (corresponding
to blocks of 4 × 4 pixels) and codebook size N = 32, 64, 128, 256 and 512 was
considered. The corresponding coding rates are 0.3125 bpp, 0.375 bpp, 0.4375 bpp,
0.5 bpp and 0.5625 bpp, respectively.

Simulations were performed using an AMD Athlon 64, 2.01 GHz with 1 GB
RAM. The source codes were implemented using C++ language.

Tables 3, 4, 5 and 6 present the number of multiplications, additions, subtrac-
tions and comparisons performed by the CL algorithm, respectively, when FS, PDS
and Torres-Huguet are used for the task of winner determination. In all simulations,
PDS and Torres-Huguet algorithms are more efficient than FS algorithm. It is ob-
served that the PDS algorithm is more efficient when compared to the Torres-Huguet
algorithm with respect to multiplications and additions. However, concerning the
number of subtractions and comparisons, Torres-Huguet is more efficient than PDS.
As an example, for N = 512, Torres-Huguet achieves subtractions savings of 90.39%
with respect to FS while the corresponding savings of PDS is 86.17%.

Table 7 indicates the benefits introduced by the PDS and Torres-Huguet algo-
rithms in terms of reducing the number of clock cycles spent for codebook design. It
is assumed6 that each multiplication is performed in nine clock cycles and each one
of the remaining considered operations (addition, subtraction and comparison) in
two clock cycles. Is is observed in Table 7 that the PDS algorithm overperforms the
Torres-Huguet algorithm in terms of number of clock cycles savings. As as example,
for N = 32, the substitution of FS by PDS leads to an acceleration in terms of clock
cycles about a 2.6 factor, while the corresponding substitution by Torres-Huguet
leads to an accelaration about a 1.8 factor. It is also observed in Table 7 that
the acceleration factor of the CL algorithm, obtained by substituting FS by PDS,
increases as the codebook size N increases. Indeed, acceleration factors of 2.6, 3.7,
4.6, 5.5 and 6.2 are obtained respectively for codebook sizes 32, 64, 128, 256 and
512. Table 7 also reveals that the acceleration factor of the CL algorithm, obtained
by substituting FS by Torres-Huguet, is in the range 1.8-1.9 for all codebook sizes
considered.

It is important to note that the purpose of incorporating PDS and Torres-Huguet
to CL algorithm is to reduce the computational complexity of the nearest neighbor
search (winner determination). Thus, the codebooks obtained by using PDS, Torres-
Huguet and FS for NNS in the CL algorithm are identical.

6According to http://www.intel.com/Assets/PDF/manual/248966.pdf



Accelerating a Competitive Learning Algorithm 201

Table 3: Number of multiplications performed by the CL algorithm, considering
FS, PDS and Torres-Huguet for NNS. The savings with respect to FS is within
parentheses.

Number of multiplications
N

FS PDS Torres-Huguet

32 2.6× 107 9.0× 106 (66.69%) 1.7× 107 (33.10%)

64 5.1× 107 1.2× 107 (77.18%) 3.2× 107 (37.55%)

128 1.0× 108 1.9× 107 (81.10%) 6.0× 107 (40.51%)

256 2.7× 108 4.3× 107 (83.99%) 1.6× 108 (41.27%)

512 6.7× 108 9.3× 107 (86.17%) 4.1× 108 (39.43%)

Table 4: Number of additions performed by the CL algorithm, considering FS, PDS
and Torres-Huguet for NNS. The savings with respect to FS is within parentheses.

Number of additions
N

FS PDS Torres-Huguet

32 2.4× 107 7.0× 106 (70.99%) 1.5× 107 (39.45%)

64 4.8× 107 9.0× 106 (82.24%) 2.6× 107 (45.33%)

128 9.5× 107 1.3× 107 (86.47%) 4.9× 107 (48.99%)

256 2.5× 108 2.6× 107 (89.56%) 1.3× 108 (50.16%)

512 6.3× 108 5.1× 107 (91.90%) 3.2× 108 (48.65%)

Table 5: Number of subtractions performed by the CL algorithm, considering FS,
PDS and Torres-Huguet for NNS. The savings with respect to FS is within paren-
theses.

Number of subtractions
N

FS PDS Torres-Huguet

32 2.6× 107 9.0× 106 (66.69%) 3.0× 106 (87.70%)

64 5.1× 107 1.2× 107 (77.18%) 6.0× 106 (89.18%)

128 1.0× 108 1.9× 107 (81.10%) 1.0× 107 (89.98%)

256 2.7× 108 4.3× 107 (83.99%) 2.6× 107 (90.34%)

512 6.7× 108 9.3× 107 (86.17%) 6.5× 107 (90.39%)

Table 6: Number of comparisons performed by the CL algorithm, considering FS,
PDS and Torres-Huguet for NNS. The increase with respect to FS is within paren-
theses.

Number of comparisons
N

FS PDS Torres-Huguet

32 2.0× 106 8.6× 106 (460.87%) 2.6× 106 (70.82%)

64 3.0× 106 1.3× 107 (324.28%) 5.0× 106 (59.52%)

128 6.0× 106 2.4× 107 (281.12%) 9.6× 106 (53.35%)

256 1.7× 107 5.8× 107 (245.30%) 2.5× 107 (50.51%)

512 4.2× 107 1.3× 108 (215.71%) 6.3× 107 (51.55%)



202 Bispo Jr, Azevedo, Lopes, Alencar e Madeiro

Table 7: Number of clock cycles spent by the CL algorithm for codebook design,
considering FS, PDS and Torres-Huguet for NNS.

Number of clock cycles
N

FS PDS Torres-Huguet

32 3.4 × 108 1.3 × 108 1.9× 108

64 6.6 × 108 1.8 × 108 3.6× 108

128 1.3 × 109 2.8 × 108 6.8× 108

256 3.5 × 109 6.4 × 108 1.8× 109

512 8.7 × 109 1.4 × 109 4.6× 109

7. Conclusion

This paper showed, by means of analytical expressions, that most of the operations
performed by the competitive learning (CL) algorithm applied to vector quantiza-
tion (VQ) codebook design are due to the nearest neighbor search (NNS). With
the purpose of reducing the processing time spent by the CL algorithm, two meth-
ods of fast NNS were considered: the partial distance search (PDS) algorithm and
Torres-Huguet algorithm.

Results regarding codebook design for image VQ have shown that the PDS as
well as the Torres-Huguet algorithm lead to a reduction in the number of opera-
tions (multiplications, additions and subtractions) performed by the CL algorithm.
Results obtained for image VQ showed that simple modifications performed to ac-
commodate PDS in the CL algorithm lead to consirable savings in number of clock
cycles. As an example, for a codebook size 512, CL with PDS is about six times
faster than its conventional version (CL with full search NNS).

Acknoledgment
The authors would like to thank Eduardo Lundgren for his valuable comments and
the anonymous referees for the relevant suggestions and concerns.

References

[1] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding using
wavelet transform. IEEE Trans. Image Process., 1, No. 2 (1992), 205–220.

[2] C.-D. Bei, R. M. Gray, An improvement of the minimum distortion encoding
algorithm for vector quantization, IEEE Trans. Commun., 33, No. 10 (1985),
1132–1133.

[3] O.T.-C. Chen, B.J. Sheu, W.-C. Fang, Image compression using self-
organization networks, IEEE Trans. Circuits Syst. Video Technol., 4, No.
5 (1994), 480–489.

[4] P.C. Cosman, R.M. Gray, M. Vetterli, Vector quantization of image subbands:
A survey, IEEE Trans. Image Process., 5, No. 2 (1996), 202–225.



Accelerating a Competitive Learning Algorithm 203

[5] A. Gersho, R.M. Gray, “Vector Quantization and Signal Compression”, Kluwer
Academic Publishers, Boston, MA, 1992.

[6] R.M. Gray, Vector quantization, IEEE ASSP Magazine, (1984), 4–29.

[7] T. Kohonen, The self-organizing map, Proceedings of the IEEE, 78, No. 9
(1990), 1464–1480.

[8] A.K. Krishnamurthy, S.C. Ahalt, D.E. Melton, P. Chen, Neural networks for
vector quantization of speech and images, IEEE J. Sel. Areas Commun., 8,
No. 8 (1990), 1449–1457.

[9] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design, IEEE

Trans. Commun., 28, No. 1 (1980), 84–95.

[10] F. Madeiro, W.T.A. Lopes, B.G. Aguiar Neto, M.S. Alencar, Complexidade
computacional de um algoritmo competitivo aplicado ao projeto de quanti-
zadores vetoriais, Learning and Nonlinear Models, 1, No. 3 (2004), 172–186.

[11] K.K. Paliwal, B.S. Atal, Efficient vector quantization of LPC parameters at
24 bits/frame, IEEE Trans. Speech Audio Process., 1, No. 1, (1993), 3–14.

[12] L. Torres, J. Huguet, An improvement on codebook search for vector quanti-
zation, IEEE Trans. Commun., 42, No. 2/3/4 (1994), 208–210.


