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Abstract. In this paper, we derive vertical distributions of carbon dioxide atmo-
spheric concentration from satellite data using a retrieval algorithm based on an
artificial neural network (ANN) technique. Sensitivity studies were made to select
the most appropriate sensor channels. A MultiLayer Perceptron (MLP) ANN was
implemented and tested for a large and diversified dataset. Here we focused on
the retrieval of vertical Carbon Dioxide concentration profiles using SCIAMACHY
channel 6 (1000-1700 nm) nadir measurements. The results show we can accurately
and efficiently obtain carbon dioxide profiles by using this approach.

Keywords. Neural networks, Radiative Transfer Equation, CO2 vertical concen-
tration profiles, Inverse problems.

1. Introduction

Carbon dioxide is the most important anthropogenic greenhouse gas. From 1832 to
2009, the atmospheric CO2 concentration increased from 284 ppmv to 388 ppmv,
or about 37%, with most of the change occurring since 1970 [19]. It is becoming
increasingly relevant to develop novel and better techniques to estimate concentra-
tion profiles of carbon dioxide. Until recently, information on sources and sinks on
the global scale was derived from a precise but rather sparse network of about 100
ground stations (e.g., NOAA/ESRL). Retrievals from space based remote sensing
instrumentation have the potential to overcome the limits of the surface network
and constrain the inverse models. However, the retrieval of a long-lived and there-
fore well-mixed gas such as CO2 is challenging, because only small variations in the
concentration distribution contain the necessary information on surface sources.
Rayner and O’Brian estimate that we need a precision of 2.5 ppmv ( 0.7%) of CO2,
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for monthly averaged column data at 8×10◦ spatial resolution, to get a performance
comparable to the current network of ground stations [15]. Similar conclusions have
been drawn by other studies [12].

Measuring CO2 from space is a new field of research and only a few relevant
studies exist. CO2 retrieval feasibility and sensitivity studies have already been per-
formed for the Scanning Imaging Absorption Spectrometer for Atmospheric Char-
tography (SCIAMACHY) ([4] and [5]). The first CO2 measurements results from
SCIAMACHY also have been presented in [5]. The SCaning Imaging Absorption
spectroMeter for Atmospheric ChartographY (SCIAMACHY) sensor is part of the
atmospheric chemistry equipment aboard the ESA’s Envisat environmental satel-
lite, launched in March 2002. The SCIAMACHY instrument is a multichannel
spectrometer that measures the scattered, reflected and transmitted solar radia-
tion. It covers the spectral wave band of 240-2385 nm at nadir, limb and both
solar and lunar occultation observational modes, with a spectral resolution varying
from 0.2-1.6 nm [2]. The sensor spatial resolution depends on the spectral range
and on the orbital position. For channel 6, the spatial resolution is 30 × 60km2,
corresponding to an integration time of 0.25s. As a result, this sensor has a good
potential to estimate carbon dioxide and other greenhouse effect gases, using the
principle of reflected radiation in the NIR. Preliminary results showed that we can
use channel 6 (1000-1750 nm) for inference of the CO2 and CH4 column in the
atmosphere [3].

Atmospheric and surface physical properties determine the radiance measured
by an instrument at the top of the atmosphere. We describe this dependence by
means of the Radiative Transfer Equation (RTE). The mathematical model for the
RTE used in this study takes into account the effects of anisotropic scattering but
ignores the thermal emission term because it is irrelevant in the near-IR spectral
region of 1000-1750 nm (channel 6). The expression for the RTE used, in this case,
has the same form as given in [17] and [13] and can be expressed as follows
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where I−(z0, µ, ϕ) is the downwelling radiance at z0 and I+(0, µ, ϕ) is the upwelling
radiance at the ground. For sake of simplicity the dependence on the wavelength λ
is omitted and a Lambertian surface albedo is assumed. The other symbols used in
the equation along their meanings are shown in Table 1 below:

Table 1: Symbols used in the RTE

Symbol Meaning

I total radiance (i.e., radiation field)
z altitude;
z0 altitude at the top of atmosphere

µ, µ
′

cosines of zenith angles θ, θ
′

;
µ0 cosine of the solar zenith angle θ0;

ϕ, ϕ
′

azimuthal angles in relation to the line-of-sight
projection on the earth surface

ϕ0 azimuthal angle of the Sun in relation to the line-of-sight
projection on the earth surface

κ number of the trace gases
c total extinction coefficient
a total absorption coefficient (sum of trace gas and particle

absorption coefficients)
bR Rayleigh-scattering coefficient
bM particle-scattering coefficient
b total scattering coefficient (sum of Rayleigh and particle-scattering)
pM Rayleigh-scattering phase function
p total scattering phase function = (bRpR + bMpM )/(bR + bM )
αi trace gas absorption cross sections for all relevant gases
ni concentration of trace gases
aM particle absorption coefficient
πFµ0 solar flux at the top of the atmosphere
A spectral reflectance (Lambertian) of the Earth’s surface

Here, we use the RTE to estimate the trace gas concentration profiles from suit-
able gas absorption bands within the NIR transmission window. In this case, the
vertical temperature profile is determined by an independent inversion procedure
and we need only to retrieve the gas mixing ratio profile that, in the formulation
presented in [17], is part of the equation. The knowledge of the atmospheric thermo-
dynamic structure and of the concentration of the atmospheric components allows,
through the RTE, to calculate the radiance and brightness temperature measured
by the sensors on the satellite. The associated inverse problem is to estimate the
state of atmosphere from measured radiances. In the present case, we want by
solving the inverse problem, to estimate the CO2 atmospheric concentrations, from
radiances measured by the SCIAMACHY’s sensor channels. This inverse problem
presents many difficulties. First, the RTE to be inverted is a Fredholm integral
equation of the first kind, whose ill-posed nature is well known see [21]. Second,
within the RTE, the concentration intervenes through the transmission function,
which is highly nonlinear. Finally, the CO2 signal intensities are weak, even in the
more sensitive channels, and have the order of magnitude of the instrument noise
[8].

Thus, most classical estimation techniques are inappropriate. The goal of this
paper is to present an inversion algorithm, based on Multilayer perceptron (MLP)
artificial neural networks (ANNs), which retrieve CO2 vertical concentration pro-
files from satellite measurements. The use of neural networks within this context
is a natural approach that brings a satisfactory answer to these difficulties. For
example, being nonlinear by construction, neural networks avoid the need of lin-
earization, a frequent source of inaccuracies in classical inversion methods. More-
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over, since the learning phase, which is the more intense computational task, runs
off-line and only once, the computational efficiency of the inversion process is high.
Also, the proposed approach easily handles problems such as the strong ill-posed
nature of the nonlinear radiative inverse problem, the presence of noise and the
high-dimensionality of sensor’s data set. Neural networks have been successfully
employed to estimate: thermodynamical variables (see, for example, [9], moisture
profiles and surface characteristics [18], CO mixing ratios [7], ozone mixing ratios
[20] and in the direct modeling of radiative parameters [6].

This paper is organized as follows. The physical problem, the forward model
and a brief review of ANN applications to the atmospheric constituents inversion
is shown in the section 1. In the section 2 we explain the technique used for chan-
nel selection and give more information about the inverse model and its training,
validation and testing dataset. We present the results and pertinent discussions in
section 3. Finally, conclusions and perspectives are given in section 4.

2. Materials and Methods

As a first step, we examined the performance of the radiative transfer model (the
forward model) that was used in the inversion. Based on these studies we decided
to exploit SCIAMACHY’s near-infrared channel 6. As a second step, we performed
sensitivity studies to separate the most suitable subchannels within this spectral
range. Finally, we developed an ANN based model to retrieve the trace gas con-
centration profiles from (synthetic and real) remote sensing data. To this end, we
employed synthetic radiances simulated by SCIATRAN [16] for the ANN learning
process. SCIATRAN is a radiative transfer forward model developed for retrieval of
atmospheric trace gas concentrations, aerosol and cloud parameters, and surface re-
flectance from the spectral radiance measurements of the SCIAMACHY/ENVISAT-
1 and GOME/ERS-2 UV-Vis-NIR multichannel spectrometers. SCIATRAN solves
the RTE using a finite differences method for a plane-parallel, pseudo-spherical
or spherical atmosphere, vertically inhomogeneous, considering multiple scattering.
The wavelength range covered by the radiative transfer model is 175-2380 nm(see
[16] for more details).

In our study, the SCIATRAN version 2.1. was adjusted in such a way that all
radiative transfer calculations were performed in a spherical atmosphere (i.e., we
consider all effects due to the sphericity of the Earth’s atmosphere), based on full
multiple scattering radiative tranfer simulations, in the nadir mode, with a 0.045◦

instrument field of view size, azimuth angle of 76.35◦ and a global albedo of 0.3. The
retrieval of atmospheric CO2 abundance is made from SCIAMACHY observations
under clear sky and clean air conditions. The pixels produced by the sensor showing
clouds are identified and discarded prior to our study.

2.1. Channel selection

We can use an ANN approach, in principle, to map any input vector space to any
output vector space. However, in practice, the data representation significantly
affects the quality of the results. We may use dimension reduction techniques to
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present not only a more compact representation but also more relevant information
to the input of the ANN (see, for example, [11]). The "curse of dimensionality"
stipulates that it is hard to apply a statistical technique to high-dimension space
data. The number of parameters (the weights in the ANN) increases with the num-
ber of inputs. This can allow excessive degrees of freedom in the neural interpolator
and introduce uninformative data (i.e., noise or spectral information unrelated to
retrieved quantities), which may distort the learning process [1].

Thus, the goal of dimension reduction is to present to the ANN the most rele-
vant information from initial raw data (i.e., noisy physical measurements). We can
reduce the dimensionality of the input data through feature extraction (a trans-
formation, linear or not, of raw data) or using feature selection through selection
of specific channels in the input data [14]. Here we chose the feature selection ap-
proach. For the retrieval of one geophysical variable, we select channels that are, as
far as possible, uniquely sensitive to this one atmospheric parameter. By studying
the derivatives of the radiances with respect to each geophysical parameter (RTE
Jacobians), it is possible to inspect the common information between measured
radiances and geophysical variables. Nevertheless, we need to make a trade-off be-
tween reducing data dimensionality and preserving the information content in the
data to compensate the effects of noise. We based our feature selection method on
the study of finite difference estimates of the partial derivatives of the measured
radiance with respect to the gas concentration (integrated along the column or at a
given pressure level), for each wavelength. This approach is called “sensitivity anal-
ysis”. Particularly, we focused on the infrared channels presenting certain desirable
features such as a low noise level in the signal; high sensitivity to changes in the
concentration profile; minimum contamination by other gas absorption lines such
as H2O, O3, N2O, CO; and low sensitivity to the temperature profile.

So, the results presented in this manuscript have been derived using CO2 ab-
sorption features in channel 6 (1000-1750 nm) with 507 spectral lines, which are not
affected by an ice-layer, as their detectors operate at higher temperatures. Figure 1
shows the spectral sensitivity of channel 6 for CO2, N2O and CH4 when we add
10% to the respective reference concentration profiles as suggested in [10].

We note that highly sensitive CO2 lines in channel 6 are mainly located within
two spectral windows, around 1200 nm and from 1580 to 1650 nm. We also took
into account the cross section effect of the N2O and CH4 lines for the CO2 retrieval.
The final result, with the selected spectral lines is depicted in Table 2. Overall, 21
lines have been chosen for CO2 retrieval.

Table 2: SCIAMACHY channels used to recover the CO2 vertical concentration
profile (nm).

1219.00 1291.60 1438.10 1441.10 1532.80 1568.30 1569.78
1571.26 1572.74 1574.22 1577.18 1580.14 1581.62 1584.60
1597.90 1599.38 1600.86 1602.34 1603.82 1606.80 1608.28
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Figure 1: Sensitivity in percent to a 10% profile perturbation vs. wavelength in the
1000-1750 nm SCIAMACHY window (channel 6).

2.2. ANN training and testing

The next step, after selecting the most promising channels, is the generation of
suitable training patterns to serve as input for our ANN based inverse model. The
procedure to create the training database is as follows: For a given gas, we se-
lect from SCIATRAN’s climatological database, a reference concentration profile
P0 = [C01, C02, ..., C0m], where m is the number of vertical points. We then run
the forward model for P0 producing a radiance vector R0 = [R01, R02, . . . , R0n],
where n is the number of selected channels or wavelengths chosen previously. We
modify P0 to generate a profiles set Pbase comprising new profiles Pj , with j =
−Jmax, . . . , Jmax ∼ 50 through the relation Pj = P0 ×

(

1 + j
100

)

We repeatedly run the forward model to obtain the corresponding Rj vectors.
Then we derive three more profile sets from Pbase by perturbing stochastically the
profiles Pj ∈ Pbase to generate three new state concentration vectors through P k

σ =
Pj×(1 + σ × µ), where σ is the noise standard deviation and µ is a random variable
taken from a Gaussian distribution with zero mean and unitary variance. The values
for σ we used were 0, 0.01, 0.05 and 0.1. We proceed this way to get a dataset as
representative as possible of the real state of the atmosphere. In this study, we
considered different reference profiles P0 representing the climate in mid-latitudes,
sub-Arctic, and equatorial regions of the globe for the two well-defined seasons of
winter and summer.

Finally, each dataset (Ra and Rb) was divided into three subsets following as
suggested by Haykin [11]:(I) Training set, with 2232 samples (∼ 92%), comprising
the training patterns to be used during the ANN training phase;(II) Validation
set, with 120 samples (∼ 5%), to be used in the cross validation to evaluate the
ANN performance; (III) Generalization set, with 72 samples (∼ 3%), employed for
the effective test of the ANN, known as generalization test. In our experiments,
weights and biases of all ANN models have been randomly initialized with values



Retrieval of CO2 Vertical Concentration Profiles using ANN 211

drawn from a [-1, 1] uniform distribution. A momentum term was specified to
filter out high frequency disturbances on the error surface. The initial values for
learning rate and momentum term as well as the activation function used in our
experiments are 0.125 and 0.40 for the logarithmic activation function and 0.015 and
0.8 for the Gaussian. We considered data sets with 10%, 5%, 1% and 0%(noiseless)
of zero mean additive white Gaussian noise (AWGN) added to the synthetic data
to analyze the performance of the ANNs in the retrieval of vertical carbon dioxide
profiles. The mean generalization errors of the simulation results for each trace gas
were calculated through:

Error =

√

√

√

√

pt
∑

i=ps

(Cexact
i − Cmodel

i )/N (2.1)

where N is the number of profile sample points, ps and pt are, respectively, the pres-
sure level at the surface and the top of the atmosphere (TOA). All the atmospheres
used during the learning and the testing phases are described by 50 atmospheric
concentration measurement points (LOWTRAN levels up to 0.000036 hPa or 120
km height) and the corresponding selected radiances computed by SCIATRAN. To
solve the problem of the CO2 concentration retrieval we developed an algorithm,
written in Java language, that implements a Multilayer perceptron ANN ([11] and
[1]). All experiments were conducted under the Linux operating system, in a mi-
crocomputer processor with AMD Athlon (tm) 64 Processor 3200+, 1.53 GHz and
1Gb MB of RAM.

3. Results and Discussion

Table 3 presents the precise combinations of parameters used in each simulation, as
well as a summary of statistics for CO2 dataset. Different number of hidden neurons
has been considered for each ANN architecture. We perform 10 experimental runs of
the model for each topological configuration found. Next, we grouped the generated
profiles and produced a resulting average profile. The standard deviation at the end
of each round of experiments is also displayed in the table below.

Table 3: Results for the retrieval of CO2 vertical concentration profile with 1%
Additive White Gaussian Noise (AWGN)

Number of layers Neurons in Generalization Standard deviation

hidden layers Error (in ppmv) (in ppmv)

2 13-5 1.6309 0.5944

2 15-10 1.6523 0.7180

1 30 1.6684 0.8223

Figure 2 shows the results of the generalization tests for the model in compar-
ison with synthetic radiance data (here called the true profile model). The results
obtained with the MLP network for CO2 noisy data are in excellent agreement with
the true model. The reconstructed profiles are homogeneous and present error of
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the order of ±1% (±3.8 ppmv in 380 ppmv), for the lower troposphere. We can
consider this result as the error due to the neural network model since there is no
noise in training data. When we corrupt the data by adding 1% gaussian noise
the profile could be reconstructed with a global error less than 2% and presented a
smooth and homogeneous shape.
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Figure 2: (a) CO2 mixing ratio (in ppmv) retrieval results in tropical region for
data corrupted with 1% white gaussian noise using MLP ANN with 2 hidden layers
having 13 and 5 neurons in each layer, respectively. (b) Retrieved profile error (in
percent).

In particular, the overall performance of the model for CO2 retrieval in the
boundary layer region is also satisfactory presenting a rms error of ±1% (±3.8
ppmv in 380 ppmv) for noisy data. If we look in the upper troposphere and in the
most part of the stratosphere the error remains lower than about 2% if we handle
data with or whithout noise. A good match with the experimental profile curve is
also obtained in the upper layers (mesosphere and part of the thermosphere) but
increases substantially in the higher altitudes (above 100 km) where the errors reach
a maximum of 4%. We validate the retrieved results with available in situ data from
Flask measurements obtained at Mauna Loa Observatory, Hawaii at latitude 19.54◦

N, longitude 155.58◦ W and elevation 3397.0 m [19]. The data is distributed evenly
throughout the year 2005 and amounted to a set of 12 observations. In the figure 3
a comparison is made between data obtained by the proposed inversion model and
the in-situ data collected at the observatory. In general the errors obtained by the
model are close to the threshold established by [15] for the maximum error allowed
to estimate CO2 integrated column (see section 1).

The precision (random error) of the retrieved CO2 Mixing Ratio due to instru-
ment noise is ∼ 1% for the spectral fitting window used for this study (for an albedo
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Figure 3: (Top) CO2 mixing ratio (in ppmv) retrieval results for Mauna Loa, Hawaii
using MLP ANN with 2 hidden layers having 13 and 5 neurons in each layer, re-
spectively. (Bottom) Residual Fit error (in percent).

of 0.3 and a solar zenith angle of 53◦) [3]. Comparisons between the CO2 predicted
by the ann based model and those observed by SCIAMACHY along the year 2005 in
the selected region show, in general, good agreement. The fit residuum is detected
to within 3% with the mean difference between the CO2 distributions being 1-3%
and the standard deviation approximately 0.75%. The correlation between the time
series of the SCIAMACHY and the monthly model averages is typically ∼ 0.61 what
indicates a moderated ability of the inversion algorithm to retrieve seasonal changes
in CO2 concentrations. However, SCIAMACHY detects a seasonal cycle amplitude
about 2 times larger than predicted by the model, which can not be explained yet.

From this study the overall precision and bias of the retrieved Mixing Ratios
are estimated to be close to 1.0% and 3.0% respectively. It also must be re-stressed
that scaling factors were not applied at any stage to the retrieved CO2 Mixing
Ratios as they have been in other studies. Whilst these results are encouraging
they are still not of the desired quality for inverse modelling. It is hoped that
further improvements to the retrieval algorithm, through better calibration of the
SCIAMACHY data and by improving the quality of the input data set used by the
ann model in the training, will overcome this issue in the future.
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4. Conclusions

Atmospheric CO2 vertical concentration profiles are retrieved in the tropics at lati-
tude and longitude coordinates (19.54N,155.58W) using SCIAMACHY’s channels 6
(1000-1700 nm) near-infrared nadir measurements. The inversion method relies on
a nonlinear regression inference scheme using neural networks. For this, we applied
a multilayer perceptron (MLP) architecture with supervised learning and the back-
propagation algorithm for the network training. Sensitivity studies were performed
and a methodology to select the most appropriate subchannels for the retrieval was
created.

The use of neural networks was able to solve this difficult inverse problem even
when the data were contaminated with noise. The overall precision and bias of the
retrieved vertical profiles are estimated to be close to 1.0% and lower than 3.0%
respectively. A rough estimate of the mean relative error is about 1.5% for the
synthetic data and 2% for the experiment with satellite data. Finally, the satellite
retrievals have been compared with ground-based in-situ measurements from NOAA
ESRL flasks network.

From this work, two advantages of the use of neural networks in the retrieval
of trace gases became clear. First, after the training phase, the reconstruction
algorithm is much faster (in the order of milliseconds) than the classical inversion
methods. Second, it can be easily implemented in a parallel environment. A future
work could be to compare the performance of the model with other operational
approaches and use this results to produce CO2 source and sinks distribution maps.
More studies, an improved calibration, and algorithm refinements are needed to
enable accurate retrievals of CO2 columns.

Resumo. Neste paper, derivamos distribuições verticais de concentração atmos-
férica de dióxido de carbono a partir de dados de satélite utilizando um algoritmo
de inversão baseado em uma técnica de redes neurais artificiais (RNA). Estudos de
sensibilidade foram efetuados para selecionar os canais mais apropriados do sensor.
Uma RNA Perceptron de múltiplas camadas foi implementada e testada para um
amplo e diversificado conjunto de dados. Aqui, focamos a recuperação de perfis
verticais de concentração de dióxido de carbono usando medidas em modo nadir
no canal 6 do sensor SCIAMACHY (1000 - 1700 nm). Os resultados mostram
que podemos de obter perfis de CO2 de maneira eficiente e precisa por meio desta
abordagem.
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