
�

�

“main” — 2016/11/4 — 12:46 — page 321 — #1
�

�

�

�

�

�

Tema
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ABSTRACT. To approximate a simple root of a real function f we construct a family of iterative maps,
which we call Newton-barycentric functions, and analyse their convergence order. The performance of the
resulting methods is illustrated by means of numerical examples.
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1 INTRODUCTION

The classical Newton’s iterative scheme for approximating the roots of an equation has been
generalized by many authors in order to define iterative maps going from cubical to arbitrary

orders of convergence (see for instance [1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13], and references therein).
In particular we mention the third-order method introduced in [13] and a family of high-order
methods based on quadrature rules, recently described in [3].

In that work the authors have introduced a recursive algorithm for constructing iterative maps.

The first iterative function of this family is the classical Newton’s method, which can be seen as
the result of applying the rectangles rule to approximate a certain integral. As it is well-known,
Newton’s method has, in general, second order of convergence (when applied to the computation

of simple roots). In the referred work [3], the authors have shown that iterative maps of arbitrarily
high order can be obtained if quadrature rules of higher degree are used (instead of the rectangles
rule) to compute the mentioned integral. The properties of these methods were analysed and their

convergence has been illustrated by several numerical examples.

In the present work we also construct a family of high order iterative maps, starting with the
Newton’s method, but we follow a different approach. All the iterative maps t to be considered
have the common structure t (x) = x − [φ(x)]−1 f (x), where f is a real function with a simple
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322 ON HIGH ORDER BARYCENTRIC ROOT-FINDING METHODS

zero at z. The function φ will be called a model function. This model function depends on f and

on another function h which we name step function.

The family of iterative maps to be discussed is constructed by choosing a certain model function
φ. We remark that our approach does not follow the traditional path for generating iterative maps
by direct or inverse hyperosculatory interpolation (see, for instance [12]) or Taylor expansions

around a zero of f (see for instance [10]).

Given a real-valued function f defined on an open set D ⊂ R, we assume that f is sufficiently
smooth in a neighbourhood of a simple zero z of f . In what follows we show how to construct a
family of iterative maps t generating a sequence xi+1 = t (xi ), i = 0, 1, . . ., converging locally

to z.

Maps of higher order of convergence can produce accurate approximations with a smaller number
of iterations. However, in general, they have expressions of increasing complexity, and so aug-
menting its computational cost. In this paper we show that at least for some Newton-barycentric

methods the gain in accuracy compensates the computational cost. Like other root-finding meth-
ods these iterative maps can be easily extended to the case of multivariate functions. Numerical
experiments have been carried out and the results are promising. The corresponding theory is

still under construction.

The paper is organized as follows. In Section 2 we introduce the notion of a model function φ

and prove that the iterative map t (x) = x − [φ(x)]−1 f (x) has a certain order of convergence
(see Proposition 2.1). This is the main idea for the construction of recursive families of iterative

functions.

In Section 3 we describe in detail one of these families, which we call the Newton-barycentric
iterative maps. We begin by specifying the choice of the model function in the case of this family
(Subsection 3.1). Then we describe the algorithm for obtaining iterative maps, based on this

model function and we give the formulae of some of these maps (Subsection 3.2). In Section 4
we analyse the application of some Newton-barycentric formulas to some numerical examples.
We finish in Section 5 with some conclusions.

2 RECURSIVE FAMILIES OF ITERATIVE MAPS

In this section we describe a procedure for constructing recursive families of higher order iterative
methods.

Proposition 2.1. Let z be a simple zero of a function f : D ⊂ R �→ R and φ a sufficiently
smooth function in a neighbourhood of z, such that its derivatives φ(i) satisfy the j +1 equalities

φ(i)(z) = f (i+1)(z)

i + 1
, i = 0, 1, . . . , j, (2.1)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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GRAÇA and LIMA 323

for j ≥ 0 a fixed integer. Then, for any initial value x0 sufficiently close to z, the iterative

process xk+1 = t (xk), k = 0, 1, . . ., with

t (x) = x − [φ(x)]−1 f (x), (2.2)

converges to z and its order of convergence is at least j + 2.

Proof. From (2.2) it is obvious that the zero z of f is a fixed point of the map t (that is,
t (z) = z). Let us consider the function �t defined by

�t (x) = t (x) − x .

Note that its derivatives are

�(1)t (x) = t (1)(x) − 1, and �(i)t (x) = t (i)(x), for i ≥ 2.

We now use induction on j to prove that the hypotheses in (2.1) imply that �t (z) = 0,
�(1)t (z) = −1, �( j)t (z) = 0, for j ≥ 2, and consequently t has the referred order of con-

vergence.

Let j = 0. Rewriting (2.2) as
φ(x)�t (x) = − f (x), (2.3)

and applying the derivative operator to this equation, we have

φ(1)(x)�t (x) + φ(x)�(1)t (x) = − f (1)(x). (2.4)

Since �t (z) = 0, and φ satisfies (2.1) with i = 0, it follows that f (1)(z)�(1)t (z) = − f (1)(z).
As z is a simple zero for f , then

�(1)t (z) = −1 ⇐⇒ t (1)(z) = 0,

which means that the iterative process generated by t has local order of convergence p at least 2.

That is, p ≥ j + 2.

Let j = 1. Differentiating (2.4), we get

φ(2)(x)�t (x) + 2 φ(1)(x)�(1)t (x) + φ(x)�(2)t (x) = − f (2)(x).

Since �t (z) = 0 and �(1)t (z) = −1, we obtain

−2
f (2)(z)

2
+ f (1)(z)�(2)t (z) = − f (2)(z).

Therefore �(2)t (z) = t (2)(z) = 0, and so the iterative process has local order of convergence at
least 3 = j + 2.

For an integer m ≥ 2, assume that

φ( j)(z) = f ( j+1)(z)

j + 1
, for j = 0, 1, . . . , m,

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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and

�(1)t (z) = −1, �( j)t (z) = 0, for j = 2, 3, . . . , m. (2.5)

Let us show that �(m+1)t (z) = t (m)(z) = 0. From (2.3) and the Leibniz’s rule for the derivatives

of the product, we have

φ(m+1)(x)�t (x) +
(

m + 1

1

)
φ(m)(x)�(1)t (x) + · · · +

(
m + 1

m

)
φ(1)(x)�(m)t (x)

+φ(0)(x)�(m+1)t (x) = − f (m+1)(x).

Thus, by the induction hypotheses, we obtain

−
(

m + 1

1

)
f (m+1)(z)

m + 1
+ f (1)(z)�(m+1)t (z) = − f (m+1)(z) ⇔ �(m+1)t (z) = 0.

Hence the iterative map tm+1 has local order of convergence p ≥ m+2 and the proof is complete.

Remark 2.1. The well-known result on the local order of convergence of the Newton’s map

t (x) = x − [
f (1)(x)

]−1
f (x) follows immediately from Proposition 2.1. It is enough to see that

(2.1) is verified for j = 0, i.e. φ(0)(z) = f (1)(z), and so t has local order of convergence at
least 2.

With the aim of analysing in detail the process of creating iterative maps, proposed in Proposi-

tion 2.1, we will now introduce the definitions of model function and step function.

Definition 2.1. Let z be a simple zero of a function f : D ⊂ R �→ R, h and φ sufficiently smooth
functions in a neighbourhood of z, and j ≥ 0 a fixed integer.

• A function φ is called a model function of degree j , at x = z, if it satisfies the j + 1
conditions (2.1), but does not satisfy a similar condition for i = j + 1.

• A function h is called a step function of degree j at x = z (or simply a step function) if it

satisfies the following j + 1 equalities:

h(z) = 0, h(1)(z) = −1 and h(i)(z) = 0, for i = 2, 3, . . . , j, (2.6)

but does not satisfy the condition corresponding to i = j + 1.

Example 2.1. Under the conditions of Definition 2.1, set

φ(x) ≡ f ′(x). (2.7)

Then we have φ′(z) = f ′′(z) but φ′′(z) = f ′′′(z) �= f ′′′(z)/2. Therefore, φ defined by (2.7) is a

model function of degree 0.

In the same way, let

h(x) ≡ φ−1(x) f (x) =
(

f (1)
)−1

(x) f (x). (2.8)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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In this case, h(z) = f (z)/ f ′(z) = 0, but h′(z) = 1 − f (z) f ′′(z)/( f ′(z))2 = 1 �= −1. Hence h

defined by (2.8) is a step function of degree 0.

The above defined model function φ and step function h can be used to define the map t (x) =
x − [

f (1)(x)
]−1

f (x), which coincides with the Newton’s method (see Remark 2.1).

3 THE NEWTON-BARYCENTRIC MAPS

We now consider a family of iterative maps, based on the model function φk , defined as follows:

φk is the inner product of a constant vectorial function Uk and a function Vk depending only on
the first derivative f (1) evaluated at x + i h(x), for i = 0, . . . , k. Namely, we take

Uk(x) = (a0, a1, a2, . . . , ak) = a, (3.1)

where the choice of a will be discussed below, and

Vk(x) =
(

f (1)(x), f (1)(x + h(x)), . . . , f (1)(x + k h(x))
)

, (3.2)

where h is a step function of degree k. If one proves that φk = 〈a, Vk(x)〉 is a model function of
degree k then, by Proposition 2.1, the respective process tk(x) = x − [φk(x)]−1 f (x) has order
of convergence at least k + 2.

3.1 Choice of the model function

The next proposition shows that φk is a model function of degree k if and only if Uk(x) = a is
the unique solution of a non homogeneous linear system. Moreover, this solution represents the
barycentric coordinates of φk in a basis defined by the components of Vk. The name Newton-

barycentric maps reflects this property, as well as the fact that the recursive process starts with
the Newton’s method.

Proposition 3.1. Let f be a function satisfying the hypotheses of Proposition 2.1, h a step
function of degree k, k ≥ 0 a fixed integer and φk = 〈Uk , Vk〉, with Uk and Vk defined by (3.1)

and (3.2). That is,

φk(x) = a0 f (1)(x) + a1 f (1)(x + h(x)) + · · · + ak f (1)(x + k h(x)). (3.3)

Then, the derivative of order k of Vk, evaluated at x = z, is V (k)
k (z) = Dk Rk , where Dk and Rk

are the following (k + 1) × (k + 1) matrices

Dk = diag
(

f (1)(z), f (2)(z), . . . , f (k+1)(z)
)

,

and

Rk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1

1 0 −1 −2 . . . −(k − 1)

1 0 1 22 . . . (k − 1)2

...
...

...
...

...
...

1 0 (−1)k (−1)k 2k . . . (−1)k (k − 1)k

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.4)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Furthermore,

(i) The function φk is a model function of degree k if and only if

Uk = a = (a0, a1, a2, . . . , ak)

is the (unique) solution of the linear system

Rk a = b, with b = (1, 1/2, 1/3, . . . , 1/(k + 1)) . (3.5)

In particular, this solution satisfies the equality

k∑
i=0

ai = 1. (3.6)

(ii) If f (i)(z) �= 0 for i = 1, . . . , k, then the function Uk = a represents the (normalized)

barycentric coordinates of the model function φk relative to the basis,

V k =
{

f (1)(x), f (1)(x + h(x)), . . . , f (1)(x + k h(x))
}

.

Moreover, the iterative process generated by tk(x) = x − [φk(x)]−1 f (x) has order of conver-
gence at least k + 2.

Proof. For i = 0, 1, . . . , k the derivatives of order i of Vk, evaluated at x = z, are:

V (0)
k = f (1)(z) (1, 1, 1, 1, 1, . . . , 1)

V (1)
k = f (2)(z) (1, 0, −1, −2, −3, . . . , −(k − 1))

V (2)
k = f (3)(z)

(
1, 0, 1, 22, 32, . . . , (k − 1)2

)
...

V (k)
k = f (k+1)(z)

(
1, 0, (−1)k, (−1)k2k, (−1)k 3k, . . . , (−1)k (k − 1)k

)
.

So, the equalities (3.5) hold.

For (i), since φk = 〈a, Vk(x)〉, it is straightforward to verify that the conditions (2.1) for φk to be
a model function are equivalent to the system Rk a = b. So, Uk = a must be a solution of this

system. As Rk is nonsingular, this is the unique solution. Furthermore, since z is a simple zero
of f , the equality (3.6) holds because it is just the first equation of the system Rk a = b.

For (ii), we need to show that for α = (α0, α1, . . . , αk) ∈ Rk+1, such that

α0 f (1)(x) + α1 f (1)(x + h(x)) + · · · + αk f (k)(x + k h(x)) = 0, (3.7)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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the only solution is α = 0. Differentiating (3.7) and evaluating at x = z, we obtain the homoge-

neous linear system

diag
(

f (1)(z), f (2)(z), . . . , f (k+1)(z)
)

Rk α = 0,

which admits only the solution α = 0 since both the diagonal matrix and Rk are nonsingular.

The last assertion follows from Proposition 2.1 since by item (i) φk is a model function of

degree k. �

The expressions for the first five barycentric maps are shown in Table 1.

Table 1: First five barycentric type maps.

t1(x) = x − 2 f (x)

f (1)(x) + f (1)(x + h1(x))

t2(x) = x − 12 f (x)

5 f (1)(x) + 8 f (1) (x + h2(x)) − f (1)(x + 2 h2(x))

t3(x) = x − 24 f (x)

9 f (1)(x) + 19 f (1)(x + h3(x)) − 5 f (1)(x + 2 h3(x)) + f (1)(x + 3 h3(x))

t4(x) = x − 720 f (x)

251 f (1)(x) + 646 f (1)(x + h4(x)) − 264 f (1)(x + 2 h4(x)) + 106 f (1) (x + 3h4(x) − 19 f (1)(x + 4h4(x))

t5(x) = x − 1440 f (x)∑5
i=0 αi f (1) (x + i h5(x))

, with α0 = 475, α1 = 1427, α2 = −798

α3 = 482, α4 = −173, α5 = 27

3.2 Construction of the recursive family of iterative maps

We recall that a model function φ depends on a certain step function h. Now, for each model
function φ j included in the definition of the map t j = x − [

φ j (x)
]−1

f (x), we use a step
function which is defined recursively by h j (x) = t j−1(x) − x . The starter t0 will be taken to be

the Newton’s map t0(x) = x − [ f (1)(x)]−1 f (x). The next proposition shows that the iterative
map tm , defined recursively in (3.8), has local order of convergence at least m + 2.

Proposition 3.2. Let z be a simple zero of a given function f and t0 the Newton’s map

t0(x) = x − [ f (1)(x)]−1 f (x).

For a given natural number m ≥ 1, define recursively the step function hm and the iterative map
tm by

h j (x) = t j−1(x) − x j = 1, 2, . . . , mt j(x) = x − [
φ j (x)

]−1
f (x), (3.8)

where φ j is constructed using h j as step function and φ j is a barycentric-type map, given by

(3.3)-(3.4). Then, the map tm has local order of convergence at least m + 2.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Proof. It is only necessary to prove that each function h j is a step function of degree j and the

statement follows from Proposition 3.1.

Let us apply induction on the integer m. For m = 1, we have h1(x) = t0(x)−x and so h1(z) = 0
and h(1)

1 (z) = −1.

Let m ≥ 1 be an integer. As h(0)
m (z) = 0, h(1)

m (z) = −1 and for any integer i such that 2 ≤ i ≤ m,
we have h(i)

m (z) = 0, and so hm is a step function of degree m. �

The Newton-barycentric maps tk of arbitrary degree k are thus completely defined by Propo-

sition 3.2. Let us remark that the same procedure to construct recursive families of iterative
methods can be applied using other types of model and step functions. Moreover the idea of this
method is easily extendable to the case of multivariate functions. Multidimensional analogs of

the Newton-barycentric maps have been implemented and applied to the solution of systems of
nonlinear equations and the numerical results obtained so far are promising.

4 NUMERICAL EXAMPLES

Besides the theoretical interest of this new family of iterative functions, some of the above de-

scribed methods are of practical interest. Though they are not optimal in the sense of the Kung

and Traub’s conjecture [7], they are more efficient than the Newton’s method, in the sense that

with the same number of function evaluations a more accurate result can be produced. Concern-

ing for example the Newton’s method (iterative function t0) and the method with the iterative

function t1, we know that the first one requires 2 function evaluations at each iteration, while

the second one requires 3. This means that two iterations of the second method require as many

function evalutions (6) as three iterations of the first one. However the result produced by two

iterations of the second method is in general much more accurate than the one produced by 3

iterations of the Newton’s method. This happens, because the second method has at least con-

vergence order three, and it follows that t1 ◦ t1 (the composition of t1 with itself) has at least

convergence order 9; on the other hand, since the Newton method has in general convergence

order 2, the method t0 ◦ t0 ◦ t0 has just convergence order 8. Concerning the method t2 (fourth

order of convergence) each iteration requires 5 function evaluations; however as we shall see in

the examples below, one single iteration of this method is often sufficient to obtain a result with

an error less than 10−10 (which can only be obtained with three iterates of the Newton’s method).

Let us present some numerical results that illustrate the above properties. In all the cases we have

applied the methods with the iterative functions t0, t1 and t2, starting with a certain initial approx-

imation x0 and performing enough iterations to obtain an approximation with absolute error less

than 10−10. Then we compare the error of the last approximation, the number of iterations and

the number of function evaluations by each method. Moreover we have obtained computational

estimates of the convergence order, which confirm the theoretical predictions. All the computa-

tions were carried out in a personal computer using Mathematica [14]. The results are displayed

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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in Tables 2, 3, 4 and they illustrate the advantage of using the methods with the iterative functions

t1 and t2 for approximating the roots of real functions.

Table 2: f (x) = x3 + 4x2 − 10, the initial approximation is x0 = 1, the solution is
z = 1.3652300134141, with 12 significant digits (see this example in [13]).

Iterative function Error Number of iterations Number of function evaluations

t0 2.13 × 10−11 3 6
t1 −4.54 × 10−17 2 6
t2 −4.54 × 10−11 1 5

Table 3: f (x) = cos(x) − x , the initial approximation is x0 = 0.1, the solution is
z = 0.739085133215, with 12 significant digits.

Iterative function Error Number of iterations Number of function evaluations

t0 1.03 × 10−11 3 6

t1 3.8 × 10−23 2 6
t2 −3.3 × 10−16 1 5

Table 4: f (x) = tanh(x − 1), the initial approximation is x0 = 0, the exact solution is z = 1.

Iterative function Error Number of iterations Number of function evaluations

t0 2.3 × 10−13 4 8

t1 1.8 × 10−13 3 9
t2 4.8 × 10−19 2 10

5 CONCLUSIONS

In this work we have introduced a family of high order iterative methods for the numerical so-

lution of nonlinear equations. This family starts with the Newton’s method as the basis of the

recurrence process. Then each member of the family is build by a well defined procedure, form-

ing a sequence of increasing convergence order.

The numerical examples presented in Section 4 demonstrate that the first iterative functions of

these family (in particular t1 and t2) offer a good alternative to the Newton’s method, taking

account their accuracy and number of function evaluations. We remark that these methods can

be easily combined with algorithms for the separation of real roots, such as recently described in

[4], providing an effective tool for detection and computation of real roots.
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RESUMO. Com o fim de aproximar uma raiz simples de uma função real f , constrói-se uma

famı́lia de aplicações iteradoras, que se designam funções Newton-baricêntricas, e analisa-

se a sua ordem de convergência. O desempenho dos métodos computacionais resultantes é

ilustrado através de exemplos numéricos.

Palavras-chave: Ordem de convergência, método de Newton, função Newton-baricêntrica,

equações não-lineares.
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