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ABSTRACT. In this article we deal with questions of convergence, existence and uniqueness of the numer-
ical solutions for a discretized elliptic problem by using finite difference method. In order to show existence
and uniqueness of numerical solutions we will use a suitable variational setup (at discrete level) to guarantee
the existence of a numerical solution by means of a finite difference method.
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1 INTRODUCTION

It is well known that the general model{
−�u + q(x)u = f (x) in �,

u = 0 on ∂�,
(1.1)

where q, f ∈ C(�) has been vastly studied in the last years. See, for example, [1, 2, 3, 4] and
the references therein.

Here, � ⊂ R
N , N ≥ 1 is a bounded smooth domain and f : � → R is a given function has

relevant physical motivation as, for instance, stationary solutions of heat and wave equations,

population models and geometric models and so on. Besides of this we have several nonlocal
models like {

−M(B(u))�u + q(x)u = f (x) in �,

u = 0 on ∂�,
(1.2)

where M is a given function and B is an integral operator, is also of paramount importance in the
modeling of several phenomena. In a forthcoming paper we will attack this last problem.

Let us recall some known results on existence and uniqueness of solutions to the problem (1.1).
This is important for aims that we have in mind.
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36 ON CONVERGENCE AND SOLVABILITY OF AN ELLIPTIC EQUATION

The problem (1.1) is so-called the homogeneous Dirichlet problem. Generally speaking, the

Dirichlet problem consists in coupling a differential equation with a boundary condition that
specifies the values of the unknown function on the boundary of �; one says that the Dirichlet
condition is homogeneous if the unknown is required to be zero on ∂�.

Let us take q ∈ L∞(�) and f ∈ L2(�). It is well know that a weak solution of problem (1.1) is

a function u ∈ H 1
0 (�) such that∫

�

∇u · ∇vdx +
∫

�

q(x)uvdx =
∫

�

f (x)vdx, ∀v ∈ H 1
0 (�). (1.3)

As consequence of this variational formulation, we define the functional J : H 1
0 (�) → R given

by

J (u) := 1

2

∫
�

|∇u|2dx + 1

2

∫
�

q(x)|u|2dx −
∫

�

f (x)vdx . (1.4)

This functional is often called the energy functional associated to problem (1.1) in its importance
relies from applications, where J is likely to represent an energy of some sort. Moreover, it is
well known that the functional J is differentiable on H 1

0 (�) and its derivative is given by

J ′(u)v =
∫

�

∇u · ∇vdx +
∫

�

q(x)uvdx (1.5)

−
∫

�

f (x)vdx, ∀v ∈ H 1
0 (�).

Therefore, comparing (1.3) and (1.5), one sees that the functions u is a weak solution of problem
(1.1) if and only if u is a critical point of the functional J . Furthermore it is shown that J is
continuous, coercive and strictly convex which ensures the existence of global minimum point

and consequently existence and uniqueness of solution to the problem (1.1).

1.1 Numerical setting and statement of the results

In this work, we are concerned with a discrete version of the problem (1.1) at numerical setting
of the finite differences. Here, we take � ⊂ R

2.

More precisely, we consider the following numerical scheme:{
Ld ui, j = fi, j , 0 ≤ i ≤ N , 0 ≤ j ≤ M, in �d ,

ui,0 = u0, j = 0, 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1,
(1.6)

where we are assuming that

Ld ui, j := −�d ui, j + qi, j ui, j , (1.7)

where

�d ui, j := ui+1, j − 2ui, j + ui−1, j

�x2
+ ui, j+1 − 2ui, j + ui, j−1

�y2
. (1.8)

Tend. Mat. Apl. Comput., 18, N. 1 (2017)



�

�

“main” — 2017/5/11 — 10:06 — page 37 — #3
�

�

�

�

�

�

RAMOS 37

The numerical operator (1.8) is the finite difference operator centered for the 2nd order derivative,

known as five points formula. Here, the discrete solutions ui, j and vi, j are approximations to
u(xi , y j ) and v(xi , y j ) at the mesh points (xi , y j), respectively.

Moreover, qi, j ∈ l∞(�d ) and fi, j ∈ l2
0(�d ). The space l2

0 (�d ) is defined as

l2
0 (�d ) =

{
ui, j : �d → R;

( N∑
i=0

M∑
j=0

|ui, j |2
)1/2

< ∞
}
, (1.9)

satisfying ui,0 = u0, j = 0, for all 0 ≤ i ≤ N + 1 and 0 ≤ j ≤ M + 1. This discrete space is
equipped with the inner product and the norm given, respectively, by

(
ui, j , vi, j

)
l2(�d )

= �x�y
M∑

j=0

N∑
i=0

ui, j vi, j , (1.10)

|ui, j |l2(�d ) =
(

ui, j , ui, j

)1/2

l2(�d )
. (1.11)

Moreover, we defined other inner product as

((
∇ui, j , ∇vi, j

))
= �x�y

N∑
i=0

M∑
j=0

∇xui, j · ∇xvi, j (1.12)

+ �x�y
N∑

i=0

M∑
j=0

∇yui, j · ∇yvi, j ,

and norm as

||∇ui, j || =
((

∇ui, j , ∇ui, j

))1/2
. (1.13)

In (1.12), we have used the numerical operators given by

∇xui, j := ui+1, j − ui, j

�x
, ∇yui, j := ui, j+1 − ui, j

�y
.

Moreover, the space l∞0 (�d ) is defined as being the discrete space of the real bounded sequences

l∞0 (�d ) =
{

ui, j : �d → R; sup
0≤i, j≤N,M

|ui, j | < ∞
}
, (1.14)

obeying ui,0 = u0, j = 0, for all 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1. This space is equipped with
the norm

||ui, j ||∞ = sup
0≤i, j≤N,M

|ui, j |. (1.15)

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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The discrete domain �d is given by a discretization of the rectangle [0, L1] × [0, L2]. We

consider a discretization of the intervals [0, L1] and [0, L2] given by

0 = x0 < x1 < . . . < xi = i�x < . . . < xN < xN+1 = L1,

0 = y0 < y1 < . . . < y j = j�y < . . . < yM < yM+1 = L2,

where �x = L1/(N + 1), �y = L2/(M + 1) and N , M ∈ N. Hence,

�d =
N,M⋃
i, j=0

(xi , xi+1) × (y j , y j+1) and lim
�x,�y→0

�d = (0, L1) × (0, L2).

The main results of this paper are as follows:

Theorem 1.1. Let � = (0, L1) × (0, L1) and u ∈ C4(�) be a classical solution of the Dirichlet
problem {

−�u + q(x)u = f (x), in �,

u = 0, on ∂�,
(1.16)

where �d ⊂ � is a discrete domain and ui, j a corresponding solution of the discretized problem{
Ld ui, j = fi, j , 0 ≤ i ≤ N , 0 ≤ j ≤ M, in �d ,

ui,0 = u0, j = 0, 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1.
(1.17)

Then, there exists a positive constant C independent of u satisfying the following estimate:

||u(xi , y j ) − ui, j ||∞ ≤ C||D4u||L∞(�)(�x2 + �y2). (1.18)

Theorem 1.2. Let �d ⊂ [0, L1] × [0, L2] be a discrete domain. Assuming qi, j ∈ l∞(�d ) and

fi, j ∈ l2
0 (�d ), then there exists only one solution of the discrete problem (1.17).

We highlight some observations on numerical convergence. When we deal with parabolic prob-
lems like

un+1
i, j − un−1

i, j

2�t
− un

i+1, j − 2un
i, j + un

i−1, j

�x2 − un
i, j+1 − 2un

i, j + un
i, j−1

�y2 = fi, j , (1.19)

the convergence analysis is performed through the condition CFL (Courant-Friedrichs-Lewy),
where the numerical stability is verified accordingly a Von Neumann condition (see [5]). It is
clear that, in the elliptic case, we are not able to use the same arguments. Because of this, we

use certain tools typical of elliptic equations, like Discrete Maximum Principle (see Section 10.3
of Thomas [6]) in order to guarantee the a priori estimate and, consequently, to reach in the
numerical convergence of the Poisson problem

−ui+1, j − 2ui, j + ui−1, j

�x2
− ui, j+1 − 2ui, j + ui, j−1

�y2
= fi, j . (1.20)

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Still concerning with the Poisson problem, the proof of the existence and uniqueness of the

discrete solution, given in [7, 6, 8], consists in showing that the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B − 1
�y2 I

− 1
�y2 I B − 1

�y2 I

− 1
�y2 I

. . .
. . .

. . .
. . . − 1

�y2 I

− 1
�y2 I B − 1

�y2 I

− 1
�y2 I B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(M−1)×(M−1)

associated to the numerical problem, where I is the (N − 1) × (N − 1) identity matrix and B
uma matriz tridiagonal (N − 1) × (N − 1), is a positive definite symmetric matrix and in order
to obtain invertibility we should have.

Here we use a technique which is not usual in this kind of problem. Indeed, following ideas

similar to those used in continuous case, we consider a variational approach at discrete setting. In
this way we consider an discrete functional in such a way their critical points are weak solutions
of our problem.

Our approach is this work is twofold. Firstly, we focus on the existence of an priori estimate in

order to guarantee the convergence of the numerical solution. Secondly, we build a discrete func-
tional in order to prove the existence and uniqueness of solution for the discrete problem (1.6).

1.2 Outline of the paper

The plan of this paper is as follows: in Section 2 we establish the convergence of numerical

solutions. In particular, we proved a discrete version to the Maximum Principle. In Section 3 we
treated a variational formulation in numerical setting and in Section 4 we prove our main results.
Finally, in Section 5, we proved with numerical experiments some of these results.

2 CONVERGENCE OF THE DISCRETE SOLUTION

In this section, we prove a Discrete Maximum Principle playing an important role in the proof of
the a priori estimate for solutions of the problem (1.6). Moreover, we prove a result on estimative
a priori of the discrete solution of our problem.

Theorem 2.1 (Discrete Maximum Principle). Let

Ldui, j := −�d ui, j + qi, j ui, j ≤ (≥)0, in �d . (2.1)

Then the maximum (minimum) value ui, j is reached in ∂�d ⊂ �d .

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Proof. To proof our assertive, we consider that the maximum of ui, j is not attained in ∂�d .

First we note that Ld ui, j ≤ 0 is equivalent with(
1

�x2
+ 1

�y2
+ qi, j

2

)
ui, j ≤ 1

2�x2
(ui+1, j + ui−1, j ) (2.2)

+ 1

2�y2
(ui, j+1 + ui, j−1)

for all 0 ≤ i ≤ N , 0 ≤ j ≤ M .

Suppose that ui, j is the local maximum. Then, for all indices i �= 0, N + 1, j �= 0, M + 1 we

have

ui, j ≥ ui+1, j , ui, j ≥ ui−1, j , ui, j ≥ ui, j+1 and ui, j ≥ ui, j−1.

Taking into account these inequalities, we can rewritten (2.2) as(
1

�x2
+ 1

�y2
+ qi, j

2

)
ui, j ≤ 1

2

[
1

�x2
ui+1, j + 1

�x2
ui, j + 2

�y2
ui, j

]

≤
(

1

�x2
+ 1

�y2

)
ui, j ,

from where we have, since qi, j ≥ 0 for all 0 ≤ i ≤ N , 0 ≤ j ≤ M,(
1

�x2
+ 1

�y2

)
ui, j ≤ 1

2

[
1

�x2
ui+1, j + 1

�x2
ui, j + 2

�y2
ui, j

]
≤

(
1

�x2
+ 1

�y2

)
ui, j ,

and then

1

�x2
ui, j = 1

2

[
1

�x2
ui+1, j + 1

�x2
ui, j

]
,

and, consequently,

ui+1, j = ui, j , ∀i �= 0, N + 1, j �= 0, M + 1.

Reasoning in the same way, we get

ui, j = ui+1, j = ui−1, j = ui, j+1 = ui, j−1, ∀i �= 0, N + 1, j �= 0, M + 1. (2.3)

This shows that ui, j is a constant function which obviously is a contradiction and therefore the
maximum is attained on the boundary. The proof of the minimum principle is performed in the

same way. �

Now, without loss of generality, we consider L1 = L2 = 1 and we will work in the unit square
� = (0, 1) × (0, 1). We will use the discrete sup norm for functions defined in the discretized

domain �d , that is,

||ui, j ||∞ = max
i, j∈N

|ui, j |, ∀i, j. (2.4)

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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At first we obtain a priori estimate, which may be seen as a discrete regularity result, for solutions

of a homogeneous discrete Dirichlet problem.

Theorem 2.2 (A Priori Estimate). Let ui, j be a solution of discrete system (1.6). Then, we have

||ui, j ||∞ ≤ ||Ldui, j ||∞, ∀i, j, (2.5)

where Ldui, j = −�d ui, j + qi, j ui, j and 0 ≤ qi, j ∈ l∞(�d ).

Proof. Let us consider the discrete function wi, j defined as

wi, j := 1

4

[(
xi − 1

2

)2

+
(

y j − 1

2

)2]
≥ 0, ∀i, j, (2.6)

with ||qi, j ||∞ < ||wi, j ||−1∞ . For this function we statement that

−1 ≤ Ldwi, j ≤ −1 + ||qi, j ||∞
8

, ∀i, j. (2.7)

Indeed, we have

Ldwi, j = −1

4

(xi+1 − 1
2 )2 + (y j − 1

2 )2 − 2(xi − 1
2 )2 − 2(y j − 1

2 )2

�x2

− 1

4

(xi−1 − 1
2 )2 + (y j − 1

2 )2

�x2

− 1

4

(xi − 1
2 )2 + (y j+1 − 1

2 )2 − 2(xi − 1
2)2 − 2(y j − 1

2 )2

�x2

− 1

4

(xi − 1
2 )2 + (y j−1 − 1

2 )2

�x2

+ qi, j

4

[(
xi − 1

2

)2 +
(

y j − 1

2

)2
]
.

Ldwi, j = −1

4

(xi+1 − 1
2 )2 − 2(xi − 1

2 )2 + (xi−1 − 1
2 )2

�x2

+ 1

4

(y j+1 − 1
2 )2 − 2(y j − 1

2 )2 + (y j−1 − 1
2 )2

�y2

+ qi, j

4

[(
xi − 1

2

)2 +
(

y j − 1

2

)2
]

Ldwi, j = −1

4

(xi + �x − 1
2 )2 − 2(xi − 1

2 )2 + (xi − �x − 1
2 )2

�x2

− 1

4

(y j + �y − 1
2)2 − 2(y j − 1

2)2 + (y j − �y − 1
2)2

�y2

+ qi, j

4

[(
xi − 1

2

)2 +
(

y j − 1

2

)2
]
.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Consequently, we obtain

−1 ≤ Ldwi, j = −1 + qi, j

4

[(
xi − 1

2

)2 +
(

y j − 1

2

)2
]

≤ −1 + ||qi, j ||∞
4

[
max

0≤xi ≤1

(
xi − 1

2

)2 + max
0≤y j≤1

(
y j − 1

2

)2
]

= −1 + ||qi, j ||∞
8

.

Now, let us assume that ||qi, j ||∞ = 7 < ||wi, j ||−1∞ , from where we obtain

−1 ≤ Ldwi, j ≤ −1

8
,

and then we can define

Ldwi, j = −ξi, j ∈ I, ξi, j ≥ 0,

for 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1 and I = [ − 1, −1/8
]
. Moreover, we define the discrete

functional

g±
i, j : l2

0(�d ) × l2
0(�d ) → R

(ui, j , wi, j ) �→ g±
i, j = ui, j ± 8||Ldui, j ||∞wi, j .

to obtain

Ld g−
i, j = Ld(ui, j − 8||Ldui, j ||∞wi, j ) = Ld ui, j − 8||Ldui, j ||∞Ldwi, j

= Ldui, j + 8ξi, j ||Ld ui, j ||∞ ≥ 0,

form where by using the Maximum Principle that the function g−
i, j attains its minimum value at

the boundary. In view of this we get

ui, j ≥ g−
i, j ≥ −8||Ldui, j ||∞ max

∂�d
wi, j ,

and from definition of wi, j em (2.6) we obtain max
∂�d

wi, j = 1

8
and then

ui, j ≥ −||Ldui, j ||∞, 1 ≤ i ≤ N , 1 ≤ j ≤ M. (2.8)

In the same way, it follows that the function g+
i, j attains its maximum at the boundary, that is,

ui, j ≤ ||Ldui, j ||∞, 1 ≤ i ≤ N , 1 ≤ j ≤ M. (2.9)

Combining the inequalities (2.8) and (2.9) it follows that

|ui, j | ≤ ||Ldui, j ||∞, ∀1 ≤ i ≤ N , ∀1 ≤ j ≤ M, (2.10)

and we conclude the proof. �

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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3 VARIATIONAL FORMULATION AND THE SPECTRUM AT DISCRETE SETTING

In this section, we are concerned with discrete solutions of the discrete problem (1.6) satisfying
a summable identity. In this way we have the following result:

Theorem 3.1. Let us consider qi, j ∈ l∞(�d ) and fi, j ∈ l2(�d ). The discrete solution of the

problem (1.6) obeys the following identity:

�x�y
N∑

i=0

M∑
j=0

(∇x ui, j · ∇xvi, j
) + �x�y

N∑
i=0

M∑
j=0

(∇yui, j · ∇yvi, j
)

+�x�y
N∑

i=0

M∑
j=0

qi, j ui, j vi, j = �x�y
N∑

i=0

M∑
j=0

fi, j vi, j , ∀ vi, j ∈ l2
0(�d ).

Proof. Firstly, multiplying both sides of the equation (1.6) by vi, j ∈ l2
0(�d ) and summing up

for 1 ≤ i ≤ N and 1 ≤ j ≤ M we obtain

− �x�y
N∑

i=1

M∑
j=1

(
ui+1, j − ui, j

�x2

)
vi, j − �x�y

N∑
i=1

M∑
j=1

(
ui−1, j − ui, j

�x2

)
vi, j

− �x�y
N∑

i=1

M∑
j=1

(
ui, j+1 − ui, j

�y2

)
vi, j − �x�y

N∑
i=1

M∑
j=1

(
ui, j−1 − ui, j

�y2

)
vi, j

+ �x�y
N∑

i=1

M∑
j=1

qi, j ui, j vi, j = �x�y
N∑

i=1

M∑
j=1

fi, j vi, j .

For appropriate algebraic manipulations on boundary terms, we get

− �x�y
N∑

i=0

M∑
j=0

(
ui+1, j − ui, j

�x2

)
vi, j − �x�y

N∑
i=0

M∑
j=0

(
ui, j − ui+1, j

�x2

)
vi+1, j

− �x�y
N∑

i=0

M∑
j=0

(
ui, j+1 − ui, j

�y2

)
vi, j − �x�y

N∑
i=0

M∑
j=0

(
ui, j − ui, j+1

�y2

)
vi, j+1

+ �x�y
N∑

i=0

M∑
j=0

qi, j ui, j vi, j = �x�y
N∑

i=0

M∑
j=0

fi, j vi, j ,

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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and then

�x�y
N∑

i=0

M∑
j=0

(
ui+1, j − ui, j

�x

vi+1, j − vi, j

�x

)
+ �x�y

N∑
i=0

M∑
j=0

(
ui, j+1 − ui, j

�y

vi, j+1 − vi, j

�y

)

+�x�y
N∑

i=0

M∑
j=0

qi, j ui, j vi, j = �x�y
N∑

i=0

M∑
j=0

fi, j vi, j .

Therefore, we obtain a a discrete formulation in finite differences consisting in the following:

to find ui, j ∈ l2
0(�d ) such

�x�y
N∑

i=0

M∑
j=0

(∇x ui, j · ∇xvi, j
) + �x�y

N∑
i=0

M∑
j=0

(∇yui, j · ∇yvi, j
)

+�x�y
N∑

i=0

M∑
j=0

qi, j ui, j vi, j = �x�y
N∑

i=0

M∑
j=0

fi, j vi, j , ∀ vi, j ∈ l2
0 (�d ),

and then we conclude the proof. �

Invoking what was done above we define in a natural way an inner product given by〈
ui, j , vi, j

〉
h

:= �x�y
M∑

j=0

N∑
i=0

(∇xui, j · ∇xvi, j
)

+ �x�y
M∑

j=0

N∑
i=0

(∇yui, j · ∇yvi, j
) + �x�y

M∑
j=0

N∑
i=0

qi, j ui, j vi, j ,

with associated norm

||ui, j ||h =
(
||ui, j ||2 + �x�y

M∑
j=0

N∑
i=0

qi, j |ui, j |2
)1/2

. (3.1)

We are now able to introduce the discrete functional

Jd : l2
0(�d ) −→ R

ui, j �→ Jd(ui, j )

given explicitly by

Jd(ui, j ) := �x�y

2

N∑
i=0

M∑
j=0

∣∣∇x ui, j
∣∣2 + �x�y

2

N∑
j=0

M∑
i=0

∣∣∇yui, j
∣∣2

+ �x�y

2

N∑
i=0

M∑
j=0

qi, j |ui, j |2 − �x�y
N∑

i=0

M∑
j=0

fi, j ui, j , (3.2)
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and it obeys the following estimate:

|Jd(ui, j )| ≤ �x�y

2

N∑
i=0

M∑
j=0

∣∣∇x ui, j
∣∣2 + �x�y

2

N∑
j=0

M∑
i=0

∣∣∇yui, j
∣∣2

+ �x�y

2

N∑
i=0

M∑
j=0

|qi, j ||ui, j |2 + �x�y
N∑

i=0

M∑
j=0

| fi, j ||ui, j |. (3.3)

Moreover, by using the inequality (see (3.7)), we obtain

|Jd(ui, j )| ≤ 1

2
||ui, j ||2h + C||ui, j ||h. (3.4)

The first result of this article shows the existence of a unique discrete solution as a critical point

of the functional (3.2), that is, if ui, j ∈ l2
0 (�d ) is a critical point of this functional, then

δ
(
Jd(ui, j )

)
vi, j = 0, ∀ vi, j ∈ l2

0 (�d ), (3.5)

where δ
(

Jd) denotes the derivative of Jd .

The next result allow us established a relationships between the norms |ui, j |2l2 and ||ui, j ||2h .

Theorem 3.2 (Variational Characterization of the First Eigenvalue). Let �d be a discrete set

of [0, L1] × [0, L2] and qi, j ∈ l∞0 . Define the functional Qd(ui, j ) : l∞0 (�d )\{0} → �d as

Qd(ui, j ) :=

N∑
i=0

M∑
j=0

[∣∣∇xui, j
∣∣2 + ∣∣∇yui, j

∣∣2] +
N∑

i=0

M∑
j=0

qi, j |ui, j |2

N∑
i=0

M∑
j=0

|ui, j |2
. (3.6)

Then, this functional (Rayleigh Quotient) obeys the following properties:

1. minu∈l∞0 (�d )\{0} Qd(ui, j ) = λ1;
2. Qd (ui, j ) = λ1 if, and only if, ui, j is a weak solution of

P̂d :
{

�dui, j + qi, j ui, j = λ1ui, j , 0 ≤ i ≤ N , 0 ≤ j ≤ M, in �d ,

ui,0 = u0, j = 0, for all 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1.

3. Every nontrivial solution of P̂d has defined sign in �d . In particular, this solution is
different of zero a.e. in ∂�d ;

4. The set of solutions of P̂d is unidimensional. In this case we say that λ1 is simple.
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Proof. The proof may be adapted on the approach from Evan’s book (see page 366, Theo-

rem 2). �

Theorem 3.3. Let ui, j solution of discrete system (1.6), then there exists a positive constant C
such that

|ui, j |2l2 ≤ C||ui, j ||2h. (3.7)

Proof. Follows from variational characterization of the first eigenvalue that

λ1 = min
u∈l∞0 (�d )\{0}

Qd(ui, j ) ≤ Qd(ui, j ) = ||ui, j ||2h
|ui, j |2l2

. (3.8)

Consequently, we arrive at

|ui, j |2l2 ≤ 1

λ1
||ui, j ||2h. (3.9)

�

4 PROOF OF THE THEOREMS 1.1 and 1.2

In this section, we prove the Theorems 1.1 and 1.2.

4.1 Proof of the do Theorem 1.1

First of all we note that h ∈ C2,α (�) guarantees that u ∈ C4(�) and then we have that

||D4u||L∞(�) = sup
(x,y)∈�,p+q=4

∣∣∣∣ ∂4u

∂x p∂yq
(x, y)

∣∣∣∣.
On the other hand, by using the Taylor’s expansion we obtain

�u(xi , y j) = u(xi + �x, y j ) − 2u(xi , y j ) + u(xi − �x, y j )

�x2

+ u(xi , y j + �y) − 2u(xi , y j ) + u(xi , y j − �y)

�y2

− 1

12

(
∂4u

∂x4
(xi , y j )�x2 + ∂4u

∂y4
(xi , y j)�y2

)
+O(�x2 + �y2),

from where we have
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Lu(xi , y j ) := −�u(xi , y j) + q(xi , y j )u(xi , y j )

= −u(xi + �x, y j ) − 2u(xi , y j) + u(xi − �x, y j )

�x2

− u(xi , y j + �y) − 2u(xi , y j ) + u(xi , y j − �y)

�y2

+ q(xi , y j)u(xi , y j) + 1

12

(
∂4u

∂x4
(xi , y j)�x2 + ∂4u

∂y4
(xi , y j )�y2

)
+ O(�x4 + �y4),

and then

Lu(xi , y j) = Ld u(xi , y j ) + 1

12

(
∂4u

∂x4
(xi , y j )�x2 + ∂4u

∂y4
(xi , y j)�y2

)
+ O(�x4 + �y4).

Now, taking into account that

Lu(xi , y j) = f (xi , y j ) = fi, j ,

we have

Ld u(xi , y j) = Lu(xi , y j ) + 1

12

(
∂4u

∂x4 (xi , y j )�x2 + ∂4u

∂y4 (xi , y j)�y2
)

+O(�x4 + �y4),

and then we obtain

Ld u(xi , y j) = fi, j + 1

12

(
∂4u

∂x4
(xi , y j)�x2 + ∂4u

∂y4
(xi , y j )�y2

)
+ O(�x4 + �y4).

Subtracting side by side this equation from the discretized problem (1.6) we obtain

Ld (u(xi , y j ) − ui, j ) = 1

12

(
∂4u

∂x4
(xi , y j )�x2 + ∂4u

∂y4
(xi , y j)�y2

)
+ O(�x4 + �y4),

which implies

||Ld(u(xi , y j) − ui, j )||∞ ≤ 1

12
||D4u||L∞(�)(�x2 + �y2) +O(�x4 + �y4).

≤ C||D4u||L∞(�)(�x2 + �y2).

Therefore, by using the priori estimate given in the Theorem 2.2 we conclude our proof.

4.2 Proof of the Theorem 1.2

We are now ready to prove Theorem 1.2. To prove our assertive we show that there exists a dis-
crete rate of change of Jd(ui, j ). Moreover, we show that Jd(ui, j ) is strictly convex and coercive
at discrete setting of the finite difference method used here.
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Discrete rate: Let us consider the discrete functional to the discrete problem (1.6):

Jd(ui, j ) = �x�y

2

N∑
i=0

M∑
j=0

∣∣∇x ui, j
∣∣2 + �x�y

2

N∑
j=0

M∑
i=0

∣∣∇yui, j
∣∣2

+ �x�y

2

N∑
i=0

M∑
j=0

qi, j |ui, j |2 − �x�y
N∑

i=0

M∑
j=0

fi, j ui, j . (4.1)

Using the inner product (1.10) and the norm (3.1) it follows that

Jd(ui, j ) = 1

2
||u||2h −

(
fi, j , ui, j

)
l2

.

We claim that Jd(ui, j ) is defined from a bilinear and limited form in discrete setting. Indeed,

considering that

ad : l2
0(�d ) × l2

0(�d ) → R

(ui, j , vi, j ) �→ ad(ui, j , vi, j )

where

ad(ui, j , vi, j ) = �x�y

2

M∑
j=1

N∑
i=1

(
∇x ui, j · ∇xvi, j

)

+ �x�y

2

M∑
j=1

N∑
i=1

(
∇yui, j · ∇yvi, j

)

+ �x�y

2

M∑
j=1

N∑
i=1

qi, j ui, j vi, j

− �x�y
N∑

i=0

M∑
j=0

fi, j ui, j , ∀ui, j , vi, j l2
0 (�d ),

it is immediate that ad(·, ·) is bilinear and then we take Jd(ui, j ) = ad(ui, j , ui, j ). From this, we

obtain an estimative for Jd(ui, j ), i.e.,

|Jd(ui, j )| ≤ 1

2
||u||2h +

∣∣∣( fi, j , ui, j

)
l2

∣∣∣ ≤ 1

2
||u||2h + C||u||h .
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Now, we show the following:

Jd(ui, j + wi, j ) = 1

2

〈
ui, j + wi, j , ui, j + wi, j

〉
h

−
(

fi, j , ui, j + wi, j

)
l2

,

= 1

2

〈
ui, j , ui, j

〉
h

+
〈
ui, j , wi, j

〉
h

+ 1

2

〈
wi, j , wi, j

〉
h

−
(

fi, j , ui, j

)
l2

−
(

fi, j , wi, j

)
l2

,

= Jd(ui, j ) +
〈
ui, j , wi, j

〉
h

+ 1

2

〈
wi, j , wi, j

〉
h

−
(

fi, j , wi, j

)
l2

,

and then

Jd(ui, j + wi, j ) − Jd(ui, j ) =
〈
ui, j , wi, j

〉
h

+ 1

2

〈
wi, j , wi, j

〉
h

−
(

fi, j , wi, j

)
l2

.

Now, taking r(wi, j ) = ||wi, j ||2h we have lim
wi, j →0

r(wi, j )

||wi, j ||h → 0 and then Jd(ui, j ) obeys

δ(Jd (ui, j ))wi, j = lim
wi, j →0

Jd(ui, j + wi, j ) − Jd(wi, j )

||wi, j ||

=
〈
ui, j , wi, j

〉
h

−
(

fi, j , wi, j

)
l2

. (4.2)

showing that the discrete rate of Jd is finite. This corresponds to the discrete version of the

differentiability of J in Fréchet sense (cf. [9]).

Strictly convex: We note that

(δ(Jd (ui, j )) − δ(Jd(wi, j )))(ui, j − wi, j ) > 0.

Indeed,

(δ(Jd(ui, j )) − δ(Jd (wi, j )))(ui, j − wi, j ) = δ(Jd(ui, j ))(ui, j − wi, j )

− δ(Jd(wi, j ))(ui, j − wi, j )

= 〈ui, j − wi, j , ui, j − wi, j 〉h

= ||ui, j − wi, j ||2h .

Therefore,

(δ(Jd (ui, j )) − δ(Jd (wi, j )))(ui, j − wi, j ) ≥ ||ui, j − wi, j ||2h > 0, if ui, j �= wi, j .
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Coercivity: Taking into account that

Jd(ui, j ) := �x�y

2

N∑
i=0

M∑
j=0

∣∣∣∇x ui, j

∣∣∣2 + �x�y

2

N∑
j=0

M∑
i=0

∣∣∣∇yui, j

∣∣∣2

+ �x�y

2

N∑
i=0

M∑
j=0

qi, j |ui, j |2 − �x�y
N∑

i=0

M∑
j=0

fi, j ui, j , (4.3)

and by using inequality (3.7), we get

Jd(ui, j ) ≥ 1

2
||ui, j ||2h − C||ui, j ||h,

and thus Jd(ui, j ) is coercive and we conclude the proof of the Theorem 1.2.

5 NUMERICAL SIMULATIONS

In this section, we present some numerical results using the finite difference (1.6). Our goal is
to show, by means of numerical experiments the results set out in the previous sections. This

scheme results in a system of coupled algebraic equations that must be solved simultaneously. In
matrix notation, the system can be written as

AU = F, (5.1)

where U represents the vector of unknowns, F the vector of independent terms and A the matrix

of the system. It is important to say that the boundary conditions are to be applied before solving
the system (5.1).

Our computational experiments were performed using MatLab considering L1 = L2 = 1, �x =
�y, where we have adopted two partitions with 50 divisions in each of the directions x and y,

the one that gave us a mesh with 2500 points. Below we present numerical simulations.

5.1 Discrete maximum principle simulations

The experiment shown here were obtained considering two separate cases. In the first case
(Figures 1 and 2), the simulations were made using qi, j = 7e−(2xi+3yi) and fi, j = −1. For

the second case (Figures 3 and 4), the simulations were made using qi, j = 7 sin(xi + 3yi) and
fi, j = 1.

Comments: They show us that the explicit finite difference numerical scheme (1.6) is robust
enough to reproduce the results of our analysis, as in Figures 1 and 3 we observe that the maxi-
mum (minimum) value is reached at the border, such as the Discrete Maximum Principle. On the

other hand, Figures 2 and 4 show us that functional energy is coercive and, therefore, inferiorly
limited.
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Figure 1: Numerical solution.

Figure 2: Functional energy.
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Figure 3: Numerical solution.

Figure 4: Functional energy.
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RESUMO. Neste artigo tratamos as questões de convergência, existência e unicidade da

solução numérica de um problema elı́ptico discretizado pelo método de diferenças finitas. A

fim de provarmos a existência e unicidade da solução numérica, usaremos uma configuração

variacional adequada (em nı́vel discreto) para garantirmos a existência de uma solução numé-

rica pelo método de diferenças finitas.

Palavras-chave: equações elı́pticas, diferenças finitas, solvabilidade de soluções numéricas.
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