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ABSTRACT. In this paper, we have considered different estimation methods of the unknown parameters
of a binomial-exponential 2 distribution. First, we briefly describe different methods of estimation such as
maximum likelihood, method of moments, percentile based estimation, least squares, method of maximum
product of spacings, method of Cramér-von-Mises, methods of Anderson-Darling and right-tail Anderson-
Darling, and compare them using extensive simulations studies. Finally, the potentiality of the model is
studied using three real data sets related to the total monthly rainfall during April, May and September at
São Carlos, Brazil.

Keywords: binomial-exponential 2, maximum likelihood estimation, Cramér-von-Mises type minimum
distance estimators, right-tail Anderson-Darling estimators.

1 INTRODUCTION

The binomial-exponential 2 (B E2) distribution has been introduced by Bakouch et al. [6] as
a distribution of a random sum of independent exponential random variables when the sample

size has a zero truncated binomial distribution. The B E2 distribution has the probability density
function (pdf)

f (x; θ, λ) =
(

1 + (λx − 1) θ

2 − θ

)
λe−λx, (1.1)

and the cumulative distribution function (cdf)

F(x; θ, λ) = 1 −
(

1 + λθx

2 − θ

)
e−λx , (1.2)

where 0 ≤ θ ≤ 1 is the shape parameter and λ > 0 is the scale parameter. The B E2 distribution
has an increasing and constant failure rate property. A generalization of the BE2 distribution was
discussed by Asgharzadeh et al. [4].
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234 DIFFERENT ESTIMATION METHODS WITH WEATHER APPLICATIONS

Bakouch et al. [6] in their paper only considered the maximum likelihood estimation (MLE)

method to estimate the parameters of the BE2 distribution. However it is of interest to compare
the MLE method with other estimation procedures such as the method of moments, ordinary
least-squares estimation (OLSE), weighted least-squares estimation (WLSE), percentile estima-

tion (PCE), maximum product of spacings estimation (MPS), Cramé r-von-Mises type minimum
distance estimation (CME), Anderson-Darling (ADE) and Right-tail Anderson-Darling estima-
tion (RADE).

We have several estimation methods available for the parametric distribution in the literature,

some of the estimation methods are well researched on theoretical aspect. However, it is worth
noting that in the case of small samples, there is often evidence that the maximum likelihood
method does not perform well. Therefore, other estimating methods have recently been devel-

oped. The appeal of the estimation methods vary from user to user and area of application. For
instance, one may prefer to use the moment estimator even when it does not have a closed form
expression. The objective of the article is to develop a guideline for choosing the best estimation

method for the BE2 distribution, which would be of interest to applied statisticians. Compar-
isons of estimation methods for other distributions have been investigated in the literature, see
e.g., [1,5,11,13,17,19,21,26].

The main goal of this paper is two fold: First is to show how different frequentist estimators

of the proposed distribution perform for different sample sizes and second is to show that the
distribution outperforms at least two-parameter distributions with respect to three real data sets.

Other motivation to use the BE2 distribution comes from the fact that stochastic models that
accommodate zero value has vast importance in practical applications, for example in forecast

models when we observe the monthly rainfall precipitation, it is common in dry periods the non
occurrence of precipitation, therefore the occurrence of zero value can be observed in differ-
ent measures such as the average, maximum and minimum. Popular models such as Gamma,

Weibull, Lognormal and Generalized Exponential distributions do not accommodate such char-
acteristic. In this paper we demonstrate that the BE2 distribution allows the occurrence of zero
value, becoming a simple alternative to be used in weather forecast models.

The paper is organized as follows. In Section 2, we present some notes and properties for the

model. In Section 3, we discuss the nine estimation methods considered in this paper. In Section 4
a simulation study is presented in order to identify the most efficient estimators. In Section 5 we
apply our proposed methodology to three real data sets related to the total monthly rainfall during
April, May and September at São Carlos, Brazil. Finally in Section 6 we conclude the paper.

2 NOTES AND PROPERTIES

Note that the family of Lindley distributions is a subfamily of the BE2 family for θ = 2
2+λ

.
Also, for another motivation, recall that the p.d.f. of the BE2 distribution can be expressed as

a two-component mixture of an exponential distribution (with scale parameter λ) and a gamma

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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distribution (with shape 2 and scale λ), i.e. f (x; p, λ) = pλ2xe−λx + (1 − p)λe−λx , where the

mixing proportion p = θ
2−θ .

Let X ∼ B E2(θ, λ), the raw moments of X about the origin is given by

E(Xr ) = r!
λr

(
1 + rθ

2 − θ

)
, (2.1)

and the survival function of X is given by

S(x; θ, λ) =
(

1 + λθx

2 − θ

)
e−λx .

Many distributions such as Gamma, Weibull, Lognormal, to list a few, do not allow occurrence

of zero values. The following proposition prove that the BE2 distribution can be used as a model
with occurrence of zero value.

Proposition 2.1. Let X be a random variable with BE2 distribution then fX (0; θ, λ) ≥ 0 for all
0 ≤ θ ≤ 1 and λ > 0.

Proof. Note that

fX (0; θ, λ) = d

dx
FX (x; θ, λ)

∣∣∣
0

=
(

2 − 2θ

2 − θ

)
λ (2.2)

where fX (0; θ, λ) ≥ 0 for all 0 ≤ θ ≤ 1 and λ > 0.

This result allows us to use the BE2 distribution as a simple alternative in the problems with
occurrence of zero value.

3 METHODS OF ESTIMATION

In this section, nine estimation procedures are discussed to obtain the estimates of the BE2
distribution parameters.

3.1 Maximum Likelihood Estimation

The method of maximum likelihood is the most frequently used method of parameter estimation.
The method’s success stems no doubt from its many desirable properties including consistency,
asymptotic efficiency, normality, invariance and simply its intuitive appeal. Let x1, . . . , xn be a

random sample of size n from (1.1), the likelihood function of the density (1.1) is given by

L(θ, λ; x) =
n∏

i=1

f (xi , θ, λ) = λn exp

(
−λ

n∑
i=1

xi

)
n∏

i=1

(
1 + (λxi − 1)θ

2 − θ

)
(3.1)

The log-likelihood function without constant terms is given by

�(θ, λ; x) = n logλ − λ

n∑
i=1

xi − n log(2 − θ) +
n∑

i=1

log(2 − 2θ + λθxi ). (3.2)

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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236 DIFFERENT ESTIMATION METHODS WITH WEATHER APPLICATIONS

From the expressions ∂
∂θ

l(θ, λ; x) = 0, ∂
∂λ

l(θ, λ; x) = 0, the likelihood equations are

n

λ
−

n∑
i=1

xi +
n∑

i=1

θxi

(2 − 2θ + λθxi )
= 0 (3.3)

and
n

2 − θ
+

n∑
i=1

λxi − 2

2 − 2θ + λθxi
= 0. (3.4)

The maximum likelihood estimator θ̂ and λ̂ are obtained by solving the non-linear equations (3.3)
and (3.4). It is important to point out that, non-linear optimization algorithms such as the quasi-

Newton algorithm, can be used to maximize directly the likelihood function given in (3.1).

3.2 Moments Estimators

The method of moments is fairly simple procedure and has been widely used for estimating
parameters in statistical models. The moments estimators (MEs) of the BE2 distribution can be

obtained by equating the theoretical moments of (1.1) with the sample moments. Consider that

E(X |θ, λ) = 2

λ(2 − θ)
and V ar(X |θ, λ) = 2(2 − θ2)

λ2(2 − θ)2
· (3.5)

are the theoretical moments of the BE2 distribution. Note that, the population coefficient of
variation given by

CV (X |θ, λ) =
√

2(2 − θ2)

2

is independent of the scale parameter λ. So, the estimator θ̂M M E for θ and λ̂M M E for λ, can be
easily obtained by solving

θ̂M M E =
√

2 − 2
( s

x̄

)2
, and

λ̂M M E = 2

x̄

(
2 −

√
2 − 2

( s
x̄

)2)
(3.6)

where x̄ and s are the sample mean and sample standard deviation respectively.

3.3 Least-Square Estimators

The ordinary least square and the weighted least square are well known methods used for estimat-

ing the unknown parameters [25]. Let F(x) be the distribution function of the random variables
{X1, X2, . . . , Xn} and X (1) < X (2) < · · · < X (n) be ordered random variables. The least square
estimators of θ and λ, denoted by θ̂L S E and λ̂L S E can be obtained by minimizing the function

LS (θ, λ) =
n∑

i=1

[
F
(
x(i) | θ, λ

)− i

n + 1

]2

(3.7)

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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with respect to θ and λ, where F(·) is given by (1.2). Equivalently, they can be obtained by

solving the following non-linear equations:

n∑
i=1

[
F
(
x(i) | θ, λ

)− i

n + 1

]
η1
(
x(i) | θ, λ

) = 0,

n∑
i=1

[
F
(
x(i) | θ, λ

)− i

n + 1

]
η2
(
x(i) | θ, λ

) = 0.

Consider the following weighted function (see Gupta & Kundu [13])

wi = 1

Var(F(x(i)))
= (n + 1)2 (n + 2)

i (n − i + 1)
.

The WLSEs, θ̂W L S E and λ̂W L S E , can be obtained by minimizing

WLS (θ, λ) =
n∑

i=1

(n + 1)2 (n + 2)

i (n − i + 1)

[
F
(
x(i) | θ, λ

)− i

n + 1

]2

. (3.8)

These estimators can also be obtained by solving:

n∑
i=1

(n + 1)2 (n + 2)

i (n − i + 1)

[
F
(
x(i) | θ, λ

)− i

n + 1

]
η1
(
x(i) | θ, λ

) = 0,

n∑
i=1

(n + 1)2 (n + 2)

i (n − i + 1)

[
F
(
x(i) | θ, λ

)− i

n + 1

]
η2
(
x(i) | θ, λ

) = 0,

where

η1
(
x(i) | θ, λ

) = −2λx(i)e−λx(i)

(2 − θ)2 , (3.9)

and

η2
(
x(i) | θ, λ

) = x(i)e
−λx(i) (1 + λθx(i)

2 − θ
) − θx(i)e−λx(i)

2 − θ
. (3.10)

3.4 Percentile Estimators

The percentile estimators is originally suggested by Kao [15,16]. This method is commonly used
to estimate the unknown parameters from the distribution functions that has a closed form of the
quantile function. The percentile estimates (PCEs) can be obtained by minimizing with respect

unknown parameters, the Euclidean distance between the ordered sample points and ordered
theoretical points, computed throughout the quantile function. Since,

F(x, θ, λ) = 1 −
(

1 + λθx

2 − θ

)
e−λx

Tend. Mat. Apl. Comput., 18, N. 2 (2017)



�

�

“main” — 2017/8/11 — 16:40 — page 238 — #6
�

�

�

�

�

�

238 DIFFERENT ESTIMATION METHODS WITH WEATHER APPLICATIONS

therefore, the quantile function is given by

x p = 1

λ
log

(
2 − θ + λθx p

(2 − θ) (1 − p)

)
.

Let X ( j) be the j th order statistics, i.e., X (1) < X (2) < · · · < X (n). If p j denotes some estimators

of F(x( j); θ, λ), then the estimators of θ and λ can be obtained by minimizing

n∑
j=1

(
x( j) − 1

λ
ln

2 − θ + λθx p

(2 − θ)
(
1 − p j

))2

(3.11)

with respect to θ and λ. The percentile estimators θ̂PCE and λ̂PCE can be obtained by solving
the following nonlinear equations

n∑
j=1

[
x j − 1

λ
log

(
(2 − θ + λθx p

(2 − θ)(1 − p j )

)](
x p

(2 − θ + λθx p)(2 − θ))

)
= 0,

n∑
j=1

[
x j − 1

λ
log

(
(2 − θ + λθx p

(2 − θ)(1 − p j )

)][
1

λ2
log

(2 − θ + λθx p )

(2 − θ)(1 − p j )
− 1

λ

θx p

(2 − θ + λθx p )

]
= 0,

respectively. In this paper, we consider the estimator of p j as p j = j
n+1 . However, different

estimators can be used instead, see for example Mann, et al. (1974).

3.5 Method of Maximum Product of Spacings

The maximum product spacing (MPS) method has been introduced by Cheng & Amin [9] as an
alternative to MLE for the estimation of the unknown parameters of continuous univariate distri-
butions. The MPS method was also derived independently by Ranneby [22] as an approximation

to the Kullback-Leibler measure of information. This method is as efficient as the MLE estima-
tors and consistent under more general conditions. Using the same notations in subsection 3.3,
define the uniform spacings of a random sample from the BE2 distribution as:

Di (θ, λ) = F (xi:n | θ, λ) − F (xi−1:n | θ, λ) , i = 1, 2, . . . , n,

where F(x0:n | θ, λ) = 0 and F(xn+1:n | θ, λ) = 1. Clearly
∑n+1

i=1 Di(θ, λ) = 1.

The maximum product of spacings estimators θ̂M P S and λ̂M P S , of the parameters θ and λ are
obtained by maximizing the geometric mean of the spacings:

G (θ, λ) =
[

n+1∏
i=1

Di(θ, λ)

] 1
n+1

, (3.12)

or, equivalently, by maximizing the function

g (θ, λ) = 1

n + 1

n+1∑
i=1

log Di (θ, λ). (3.13)

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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with respect to θ and λ. Although Cheng & Amin [9] proved that the MPS is asymptotically

equivalent to the MLE, the authors do not present a motivation in maximizing the geometric
mean. However, Cheng & Stephens [10] showed that the MPS is also a minimum goodness of fit
estimator based on the Moran’s statistics given by

M (θ, λ) = −
n+1∑
i=1

log Di (θ, λ)

i.e., to find the minimum of the Moran’s statistics is the same as finding the maximum of the

geometric mean of the spacings. Hence, the estimators θ̂M P S and λ̂M P S of the parameters θ and
λ can be obtained by solving the nonlinear equations

∂g (θ, λ)

∂θ
= 1

n + 1

n+1∑
i=1

1

Di (θ.λ)

[
η1(x(i)|θ.λ) − η1(xi−1:n|θ, λ)

] = 0, (3.14)

∂g (θ, λ)

∂λ
= 1

n + 1

n+1∑
i=1

1

Di (θ, λ)

[
η2(x(i)|θ, λ) − η2(xi−1:n|θ, λ)

] = 0, (3.15)

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

3.6 Methods of Minimum Distances

In this subsection, we present three minimum distance estimators (also called maximum good-
ness-of-fit estimators) for θ and λ. This class of estimators are based on minimizing any empirical
distribution function (EDF) statistics with respect to the unknown parameters [18].

3.6.1 Method of Cramér-von-Mises

To motivate our choice of Cramér-von-Mises (CVM) type minimum distance estimators, Mac-

Donald (1971) provided empirical evidence that the bias of the estimator is smaller than the other
minimum distance estimators. Thus, the proposed estimators are based on the Cramér-von Mises
statistics given by

W 2
n = n

∫ ∞

−∞
(
F(x(i)) − En(x(i))

)2
d F(x(i))

where En(·) is the empirical density function. Boos [7] presented a detailed discussion about this
CVM estimator. Moreover, the author presented its computational form which is given by

C(θ, λ) = 1

12n
+

n∑
i=1

(
F
(
x(i) | θ, λ

)− 2i − 1

2n

)2

. (3.16)

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Then the CMV estimators are obtained by minimizing (3.16) with respect to θ and λ. These

estimators can also be obtained by solving the following non-linear equations:

n∑
i=1

(
F
(
x(i) | θ, λ

)− 2i − 1

2n

)
η1
(
x(i) | θ, λ

) = 0,

n∑
i=1

(
F
(
x(i) | θ, λ

)− 2i − 1

2n

)
η2
(
x(i) | θ, λ

) = 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

3.6.2 Methods of Anderson-Darling and Right-tail Anderson-Darling

The Anderson-Darling estimator is another type of minimum distance estimator and is based on
an Anderson-Darling statistic (Anderson & Darling, [2, 3]). The Anderson-Darling statistic is
given by

ADS2
n = n

∫ ∞

−∞

(
F(x(i)) − En(x(i))

)2
F(x)(1 − F(x))

d F(x(i))

Boos [7] also discussed the properties of the AD estimators and presented its computational form
which is given by

A(θ, λ) = −n − 1

n

n∑
i=1

(2i − 1)

{
log F

(
x(i) | θ, λ

)+ log F
(
x(n+1−i) | θ, λ

)}
.

(3.17)

Therefore, the Anderson-Darling estimators θ̂ADE and λ̂ADE of the parameters θ and λ are ob-

tained by minimizing (3.17) with respect to θ and λ. Analogously, these estimators can also be
obtained by solving the following non-linear equations:

n∑
i=1

(2i − 1)

[
η1
(
x(i) | θ, λ

)
F
(
x(i) | θ, λ

) − η1
(
x

(n+1−i) | θ, λ
)

S
(
x(n+1−i) | θ, λ

)] = 0,

n∑
i=1

(2i − 1)

[
η2
(
x(i) | θ, λ

)
F
(
x(i) | θ, λ

) − η2
(
x

(n+1−i) | θ, λ
)

S
(
x(n+1−i) | θ, λ

)] = 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

Further, Luceño [18] discussed modifications of the standard AD statistics. The most used statis-

tic [11,17,21] is the Right-tail AD statistics given by

RADS2
n = n

∫ ∞

−∞

(
F
(
(x(i)

)− En
(
(x(i)

))2
1 − F

(
x(i)
) d F(x(i)).

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Additionally, its computational form was presented in the form of

R(θ, λ) = n

2
− 2

n∑
i=1

F
(
x(i) | θ, λ

)

− 1

n

n∑
i=1

(2i − 1) log S (xn+1−i:n | θ, λ) .

(3.18)

Hence, the Right-tail Anderson-Darling estimators θ̂RT ADE and λ̂RT ADE of the parameters θ

and λ are obtained by minimizing (3.18) with respect to θ and λ. These estimators can also be
obtained by solving the following non-linear equations:

− 2
n∑

i=1

η1
(
x(i) | θ, λ

)
F
(
x(i) | θ, λ

) + 1

n

n∑
i=1

(2i − 1)
η1
(
xn+1−i:n | θ, λ

)
S (xn+1−i:n | θ, λ)

= 0,

− 2
n∑

i=1

η2
(
x(i) | θ, λ

)
F
(
x(i) | λ, σ

) + 1

n

n∑
i=1

(2i − 1)
η2
(
xn+1−i:n | θ, λ

)
S (xn+1−i:n | θ, λ)

= 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

4 SIMULATION STUDY

In this section, we conduct Monte Carlo simulation studies to compare the performance of the fre-
quentist estimators discussed in the previous sections. Using the mixture representation described
in Section 2, the values of the BE2 distribution were generated using the following algorithm:

1. Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;

2. Generate Xi ∼ Gamma(2, λ), i = 1, . . . , n;

3. Generate Yi ∼ Exponential(λ), i = 1, . . . , n;

4. If Ui ≤ p = θ/(2 − θ), then set Ti = Xi , otherwise, set Ti = Yi , i = 1, . . . , n.

We evaluate the performance of the estimators of the BE2 distribution based on bias and MSE.
The following procedure is adopted to evaluate the performance of the estimators:

1. Generate pseudo random sample with size n of the B E2(θ, λ)

2. Using the values obtained in step 1, calculate θ̂ and λ̂ via MLE, ME, MME, LSE, WLSE,
PCE, MPS, CME, ADE, RTADE.

3. Repeat the steps 2 and 3 N times.

4. Using �̂ = (θ̂ , λ̂) and � = (θ, λ), compute the Bias 1
N

∑N
i=1

(
�̂i, j − �i, j

)
and the mean

square errors (MSE)
∑N

i=1
(�̂i, j − �i, j )

2

N
for j = 1, 2.

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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It is expected that for this approach the Bias and the MSE are closer to zero. The results are

computed using the software R (R Core Development Team). The seed used to generate the
random values is 2017. The chosen values to perform this procedure are � = (1, 0.8), N =
500, 000 and n = (15, 20, 25, . . . , 130).

The estimation methods are put under the same conditions (initial values and random samples).

The initial values used to initiate the iterative methods are the true values. The estimates are
obtained by applying the maxBFGS function in (3.2), (3.13), (3.17) and (3.18). This function is
available in the maxlik package [14]. The nls function available in the stats package and are used

in (3.7), (3.8), (3.11) and (3.16). The programs can be obtained, upon request.

In order to present a fair comparison, the estimation procedures are performed under the same
conditions. However, for some samples and estimation procedures, the numerical techniques
fail in finding the parameters estimates. Hence, a numerical study is conducted to verify the

frequency of convergence for each estimation method by counting the number of times that each
estimation fails in finding the numerical solution. In Figure 1, we present the proportion of failure
of each estimation.
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Figure 1: Rate of convergence considering different values of � and different estimation proce-

dures: 1-ME, 2-MLE, 3-MPS, 4-ADE, 5-RADE, 6-PCE, 7-LSE, 8-WLSE, 9-CME.
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From Figure 1, the PCE, LSE, WLSE and CME estimators show a high proportion of failure

in the numerical procedures. As the above estimators result in rate of failures, therefore we
discarded these estimators from our simulation study. Figure 2 shows the Bias, MSEs for the es-
timates of λ and θ obtained by using different estimation methods for 500,000 simulated samples

and considering different values of n. We have presented results only for λ = 1 and θ = 0.8 due
to space constraint. But the results are similar for other choices for λ and θ .
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Figure 2: Bias, MSEs related from the estimates of λ and θ for N simulated samples, considering
different values of n obtained using the following estimation method 1-ME, 2-MLE, 3-MPS,
4-ADE, 5-RADE.

From the graphs we can see that the Bias and the MSE of all estimators tend to zero for large n,

i.e., the estimates are asymptotically unbiased for the parameters. The MPS estimator shown to
be superior than the MLE, this result are consistent with other studies [21, 24]. It is worth men-
tioning that, although the ME has closed form expressions, we may have 2

( s
x̄

)2
> 2, i.e., θ is a

complex number. The ME and the MLE shows positive bias for both the parameters, while the
MPS shows a negative bias for the parameters. Overall, the ADE and RTADE provides superior
estimates than their counter parts in terms of Bias and MSEs. Although, both ADE and RTADE

shows almost the same results, the ADE has desirable properties such as robustness, consistence
and normally asymptotic properties [7,8] and may be used for estimating the BE2 distribution pa-
rameters. Rodrigues et al. [23] observed a similar result for the Poisson-exponential distribution
where the ADE was the best method of estimation.
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Figure 3: Bias, MSEs related from the estimates of λ and θ for N simulated samples, considering
different values of n obtained using the following estimation method 1-ME, 2-MLE, 3-MPS,
4-ADE, 5-RADE.

5 APPLICATIONS

Located in southeastern Brazil, São Carlos is a city of 238,958 inhabitants. The city has an
active industrial profile and high agricultural importance. Therefore, the study of the behaviour
of dry and wet periods has proved to be strategic and economically significant for the regional
development. From Figure 4, we observe that the city has rainy periods from October to March,

and from June to August exhibit more dry periods.

Consequently, prediction of the behavior of the transition periods in rainy sessions (April, May
and September) enables the agriculturists to be prepared against different problems, such as water
scarcity. In this paper, we consider three real data sets related to the total monthly rainfall during

April, May and September at São Carlos. The data sets (see the Appendix for more details) was
obtained from the Department of Water Resources and Power agency manager of water resources
of the State of São Paulo including a period from 1960 to 2014.

5.1 Initial Values

Finding good initial values to start iterative procedures is an important problem in numerical
analysis, while in the Section 4 we have used the true values to start the iterative procedure. In
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Figure 4: Average of the total monthly rainfall from January to December at São Carlos, Brazil.

any application these values are unknown. A good choice as initial values would be to use the

MEs (3.6), since these estimators have closed-form expressions. However, we have shown in
Section 4 that the MEs may not be computed in some cases.

Two problems can arise during the application of the MEs. First, we may have 2
( s

x̄

)2
> 2, i.e.,

θ will be a complex number. Second 2
( s

x̄

)2
< 1, i.e, θ to be greater than 1. The first problem can

be overcome by taking the absolute value among
(

2 − 2
( s

x̄

)2), while the second can be over-

come by taking the minimum value between

√∣∣∣2 − 2
( s

x̄

)2∣∣∣ and 1. Therefore, we have chosen

the modified estimator and is given by

θ̃ = min

(√∣∣∣∣2 − 2
( s

x̄

)2
∣∣∣∣, 1

)
, and λ̃ = 2

θ̃ x̄
(5.1)

where |x| is the absolute value of x . In this case λ and θ can be computed without any problem.
Note that, here we suggest the use of this estimator as initial value to be used in the iterative

methods.

5.2 Discrimination Criterion Methods

Here, different discrimination criterion are considered based on log likelihood function. Let k be
the number of parameters to be fitted and �̂ the MLEs of �, the discrimination criterion methods

are respectively: Akaike information criterion (AIC) computed through AIC = −2l(�̂; x)+ 2k,
Corrected Akaike information criterion AICC = AIC +(2 k (k +1))/(n − k −1), Hannan-Quinn
information criterion HQIC = −2 l(�̂; x)+2 k log (log(n)) and the consistent Akaike informa-

tion criterion CAIC = −2 l(�̂; x) + k (log(n) + 1). The best model is the one which provides
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the minimum values of these criteria. The Kolmogorov-Smirnov (KS) test is also considered in

order to check the goodness of the fit for the models. This procedure is based on the KS statistic
Dn = supx |Fn(x) − F(x; θ, λ)|, where sup x is the supremum of the set of distances, Fn(x) is
the empirical distribution function and F(x; θ, λ) is c.d.f. Under a significance level of 5% if the

data comes from F(x; θ, λ) (null hypothesis), the hypothesis is rejected if the p-value is smaller
than 0.05.

For the sake of comparison, the results obtained from the BE2 distribution are compared with
the Weibull, Gamma, Lognormal, Gumbel and Generalized Exponential [13] distributions and

nonparametric survival function.

5.3 Results

The data sets related to May and September have the occurrence of zero values, i.e., non oc-
currence of precipitation. This type of data does not allow us to fit popular distributions such

as Gamma, Weibull, Lognormal and Generalized Exponential distribution since they are defined
only for x > 0. To overcome this problem, we approximate 0.0 in the data set to 0.1. Although
this is not a standard procedure, yet, without changing this results we will not be able to fit these

common distributions. Nadarajah & Haghighi [20] observed that maximum likelihood estimate
of the shape parameter is non-unique for the Gamma, Weibull and Generalized exponential dis-
tributions if data set consists of zeros and therefore none of these three distributions can fit this

kind of data set. On the other hand the BE2 distribution is defined as x ≥ 0, which allow us to
use the original values in the presence of zero.

Table 1 presents the results for AIC, AICC, HQIC and CAIC criteria, for different probability
distributions. In the Figure 5, we have the survival function adjusted by different distributions

and non-parametric survival estimator.

Comparing the empirical survival function with the adjusted distributions it is observed that
the BE2 distribution fits best among the chosen models. This result is confirmed from AIC,
AICC, HQIC and CAIC criteria as the BE2 distribution has the minimum values. Considered the

parametric bootstrap confidence intervals [12] in order to build the confidence intervals for the
parameters of BE2 distribution using the Anderson-Darling estimates.

Table 2 displays the MLEs and 95% confidence intervals for θ and λ of the BE2 distribution.

The quantile-quantile (Q-Q) plot is a graphical technique which provides an assessment of good-
ness of fit. If the data set comes from the proposed distribution, the points should fall approxi-

mately along the 45-degree reference line. Figures 4 and 5 display the histogram and the Q-Q
plot from the proposed data set.

From the Figure 4, we observe that the points are approximately along the reference line. There-
fore, the proposed methodology suggests that the data related to the total monthly rainfall during

April, May and September at São Carlos demonstrate the Binomial-exponential 2 distribution.
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Figure 5: Survival function adjusted by different distributions and a non-parametric method con-
sidering the data sets related to the total monthly rainfall during April, May and September at

São Carlos.

April

D
en

si
ty

0 50 100 150 200 250

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

May

D
en

si
ty

0 50 100 150 200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

September

D
en

si
ty

0 50 100 200 300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Figure 6: Histogram from the data sets related to the total monthly rainfall.
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Table 1: Results of the AIC, AICC, HQIC and CAIC criteria and the p-values of KS statistic for
different probability distributions considering the data sets related to the total monthly rainfall
during April, May and September at São Carlos.

Month Test BE2 Weibull Gamma Lognormal Gumbel GE

April

AIC 566.697 566.814 570.371 595.503 568.860 571.125
AICC 566.937 567.054 570.611 595.743 569.100 571.365

HQIC 568.212 568.329 571.886 597.018 570.375 572.640
CAIC 572.637 572.755 576.312 601.443 574.801 577.066
KS* 0.8919 0.6810 0.5284 0.0246 0.7456 0.5148

May

AIC 543.480 545.769 544.980 580.391 553.281 544.751

AICC 543.720 546.009 545.220 580.631 553.521 544.991
HQIC 544.990 547.284 546.495 581.906 554.796 546.266
CAIC 549.420 551.710 550.921 586.332 559.222 550.692

KS* 0.8446 0.2734 0.1457 0.0013 0.0223 0.1348

September

AIC 591.595 592.515 591.911 625.321 604.370 591.780
AICC 591.821 592.741 592.137 625.547 604.596 592.006
HQIC 593.165 594.085 593.481 626.891 605.940 593.350

CAIC 597.645 598.566 597.962 631.372 610.421 597.831
KS* 0.9858 0.5679 0.34056 0.0256 0.0001 0.3205

* p-values of KS statistic.

Table 2: MLE, 95% confidence intervals for θ and λ considering the data sets related
to the total monthly rainfall during April, May and September at São Carlos.

Month � ADE CI95%(�)

April
θ 0.9297 (0.611; 0.996)
λ 0.0220 (0.016; 0.028)

May
θ 0.7097 (0.200; 0.962)

λ 0.0254 (0.015; 0.030)

September
θ 0.6375 (0.234; 0.955)
λ 0.0208 (0.017; 0.033)

6 CONCLUSIONS

In this paper, the model parameters of Binomial-exponential 2 are estimated by nine methods
of estimation, namely, maximum likelihood, moments, percentile, least squares, weighted least

squares, maximum product of spacing, Cramer-von Mises, Anderson-Darling and right tailed
Anderson-Darling. As it is not feasible to compare these methods of estimation theoretically,
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Figure 7: Q-Q plot from the data sets related to the total monthly rainfall.

we have presented the simulation study results in order to identify the most efficient procedure.

The simulation results show that the Anderson-Darling estimators outperform other procedures
such as the maximum likelihood method for estimating the parameters of the BE2 distribution.
The proposed methodology is applied in three real data sets related to the total monthly rainfall

during April, May and September at São Carlos, Brazil, demonstrating that the BE2 distribution
can be used as alternative to some well known distributions in weather related data.

ACKNOWLEDGEMENTS

The authors are very grateful to the Editor and the reviewers for their helpful and useful com-

ments that improved the manuscript.

7 APPENDIX A – DATA SET

• April: 59.00, 102.20, 17.30, 23.00, 50.60, 27.00, 203.00, 40.90, 53.00, 177.40, 94.60,
129.40, 76.00, 93.20, 22.80, 98.80, 77.70, 204.20, 16.90, 55.10, 103.90, 34.90, 39.70,

137.70, 104.20, 117.60, 17.10, 120.80, 164.90, 50.20, 172.80, 58.50, 112.40, 24.50,
32.80, 64.00, 72.10, 139.30, 0.50, 70.90, 0.80, 82.70, 108.60, 32.30, 13.60, 25.70, 135.80,
136.80, 89.70, 139.20, 102.80, 97.30, 60.60.

• May: 63.40, 41.70, 0.00, 0.00, 47.30, 31.50, 172.80, 93.50, 0.00, 60.10, 23.00, 90.10,
50.50, 67.50, 4.70, 7.10, 93.50, 0.20, 82.20, 112.90, 7.10, 35.50, 81.50, 202.60, 56.10,
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19.20, 69.10, 133.00, 111.40, 25.90, 33.50, 46.80, 54.60, 43.00, 46.50, 83.60, 73.50,

18.00, 16.30, 70.00, 56.30, 70.90, 183.70, 78.20, 6.20, 86.00, 66.10, 72.80, 20.90, 17.20,
113.90, 169.60, 22.10.

• September: 26.40, 12.50, 1.00, 44.80, 0.00, 74.20, 179.50, 76.70, 269.50, 49.00, 306.80,

102.70, 73.50, 35.20, 72.70, 28.80, 49.30, 132.00, 151.50, 39.70, 136.20, 112.00, 17.70,
11.60, 225.20, 102.60, 27.10, 17.50, 6.70, 82.20, 40.70, 54.60, 115.50, 89.50, 0.00, 17.00,
127.40, 41.70, 43.10, 84.70, 102.50, 120.90, 80.10, 18.10, 5.30, 59.50, 26.80, 0.00, 34.30,

101.10, 60.30, 31.50, 60.40, 45.30, 49.50, 70.44.

RESUMO. Neste trabalho, apresentamos diferentes métodos de estimação para os parâme-

tros da distribuição binomial-exponencial 2, tais como, estimador de máxima verossimilhan-

ça, método dos momentos, método percentil, estimador de mı́nimos quadrados, método do

máximo produto espaçado, estimador de Cramér-von-Mises, estimador de Anderson-Darling

e o estimador de Anderson-Darling com cauda a direita são apresentados. Com base em um

estudo de simulação numérica, verificamos que o estimador de Anderson-Darling retorna

estimativas mais eficientes se comparado com os outros estimadores. Por fim, nossa proposta

é aplicada em três conjuntos de dados relacionados à pluviosidade total mensal ao longo dos

meses de Abril, Maio e Setembro em São Carlos, Brasil.

Palavras-chave: distribuição exponencial-binomial 2, estimador de máxima verossimilhan-

ça, estimador de Cramér-von-Mises, estimador de Anderson-Darling.
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