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Abstract. Under the assumption that all equilibrium points are hyperbolic, the
stability boundary of nonlinear autonomous dynamical systems is characterized as
the union of the stable manifolds of equilibrium points on the stability bound-
ary. The existing characterization of the stability boundary is extended in this
paper to consider the existence of non-hyperbolic equilibrium points on the stabil-
ity boundary. In particular, a complete characterization of the stability boundary
is presented when the system possesses a type-zero saddle-node equilibrium point
on the stability boundary. It is shown that the stability boundary consists of the
stable manifolds of all hyperbolic equilibrium points on the stability boundary and
of the stable manifold of the type-zero saddle-node equilibrium point.
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1. Introduction

Usually, asymptotically stable equilibrium of autonomous dynamical systems are
not globally stable. In fact, there is a subset of the state space called stability
region (basin of attraction) composed of all initial conditions whose trajectories
converge to the asymptotically stable equilibrium point as time tends to infinity.

The problem of determining stability regions of nonlinear dynamical systems is
of fundamental importance for many applications in engineering and sciences [1],
[3], [10]. For example, estimates of the stability region are used in power systems
to estimate the maximal time the breaker can trip a transmission line after the
ocurrence of a short-circuit without causing instability [3]. The size of the stability
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region has also great importance in control theory. It has been shown that the
stability region of closed-loop nonlinear systems shrinks as the feedback control
gain is increased, leading to destabilization [9].

Optimal estimates of the stability region can be obtained exploring the char-
acterization of the stability boundary (the boundary of the stability region) [4].
Comprehensive characterizations of the stability boundary of classes of nonlinear
dynamical systems can be found, for example, in [2]. The existing characterizations
of stability boundaries are proved under the key assumption that all the equilib-
rium points on the stability boundary are hyperbolic. In this paper, however, we
are interested in studing of the stability boundary when the system is subject to
parameter variation. Under parameter variation, local bifurcations may occur on
the stability boundary and the assumption of hyperbolicity of equilibrium points
may be violated. The characterization of the stability boundary in the presence of
non-hyperbolic equilibrium points is of fundamental importance to understand how
the stability region behaves under parameter variation.

In this paper, we study the stability boundary characterization in the presence
of a type-zero saddle-node equilibrium point. Necessary and sufficient conditions
for a type-zero saddle-node equilibrium point lying on the stability boundary are
presented. A complete characterization of the stability boundary when the system
possesses a type-zero saddle-node equilibrium point on the stability boundary is also
presented. It is shown that the stability boundary consists of the stable manifolds
of all hyperbolic equilibrium points on the stability boundary union with the stable
manifold of the type-zero saddle-node equilibrium point on the stability boundary.

2. Preliminaries on Dynamical Systems

In this section, some classical concepts of the theory of dynamical systems are
reviewed. More details on the content explored in this section can be found in
[5, 12].

Consider the nonlinear autonomous dynamical system

ẋ = f(x) (2.1)

where x ∈ R
n and f : R

n → R
n is a vector field of class Cr with r ≥ 1. The solution

of (2.1) starting at x at time t = 0 is denoted by ϕ(t, x).
A point x∗ ∈ R

n is an equilibrium point of (2.1) if f(x∗) = 0. An equilibrium
point x∗ of (2.1) is said to be hyperbolic if none of the eigenvalues of the Jacobian
matrix Dxf(x∗) has real part equal to zero. Moreover, a hyperbolic equilibrium
point x∗ is of type k if the Jacobian matrix possesses k eigenvalues with positive
real part and n − k eigenvalues with negative real part. A set S ∈ R

n is said to be
an invariant set of (2.1) if every trajectory of (2.1) starting in S remains in S for
all t.

Given an equilibrium point x∗ of the nonlinear autonomous dynamical system
(2.1), the space R

n can be decomposed as a direct sum of three subspaces denoted
by Es = span {e1, ..., es}, the stable subspace, Eu = span {es+1, ..., es+u}, the
unstable subspace and Ec = span {es+u+1, ..., es+u+c}, the center subspace, with
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s+u+c = n, which are invariant with respect to the linearized system ξ̇ = Dxf(x∗)ξ.
The generalized eigenvectors {e1, ..., es} of the jacobian matrix associated with the
eigenvalues that have negative real part span the stable subspace Es, whereas the
generalized eigenvectors {es+1, ..., es+u} and {es+u+1, ..., es+u+c}, respectively asso-
ciated with the eigenvalues that have positive and zero real part, span the unstable
and center subspaces.

If x∗ is an equilibrium point of (2.1), then there exist invariant local manifolds
W s

loc
(x∗), W cs

loc
(x∗), W c

loc
(x∗), Wu

loc
(x∗) and W cu

loc
(x∗) of class Cr, tangent to Es,

Ec ⊕Es, Ec, Eu and Ec⊕Eu at x∗, respectively [5, 7]. These manifolds are respec-
tively called stable, stable center, center, unstable and unstable center manifolds.
The stable and unstable manifolds are unique, but the stable center, center and
unstable center manifolds may not be.

The system ẋ = f(x) is called topologically equivalent to a dynamical system
ẋ = g(x) if there is a homeomorphism h : R

n → R
n mapping orbits of the first

system onto orbits of the second system, preserving the direction of time.
The idea of transversality is basic in the study of dynamical systems. The

transversal intersection is notorious because it persists under perturbations of the
vector field [6]. The manifolds M and N of class Cr, with r ≥ 1, in R

n, satisfy
the transversality condition if either (i) the tangent spaces of M and N span the
tangent space of R

n at every point x of the intersection M ∩ N ,

i.e., Tx(M) + Tx(N) = Tx(Rn) for all x ∈ M ∩ N

or (ii) they do not intersect at all.

3. Type-Zero Saddle-Node Equilibrium Point

In this section, a specific type of non-hyperbolic equilibrium point, namely type-zero
saddle-node equilibrium point, is studied. In particular, the dynamical behavior in
a neighborhood of the equilibrium is investigated in details including the asymptotic
behavior of solutions in the invariant local manifolds.

Consider the nonlinear dynamical system (2.1).

Definition 3.1 ([5]). A non-hyperbolic equilibrium point p ∈ R
n of (2.1), is called

a saddle-node equilibrium point if the following conditions are satisfied:
(i) Dxf(p) has a unique simple eigenvalue 0 with right eigenvector v and left eigen-
vector w.
(ii) w(D2

xf(p)(v, v)) 6= 0.

Saddle-node equilibrium points can be classified in types, according to the num-
ber of eigenvalues of Dxf(p) with positive real part.

Definition 3.2. A saddle-node equilibrium point p of (2.1), is called a type-k
saddle-node equilibrium point if Dxf(p) has k eigenvalues with positive real part
and n − k − 1 with negative real part.

In this paper, we will be mainly interested in type-zero saddle-node equilib-
rium points. If p is a type-zero saddle-node equilibrium point, then the following
properties hold [13]:
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(1) The unidimensional local center manifold W c

loc
(p) of p can be splitted in three

invariant submanifolds:

W c

loc
(p) = W c

−

loc
(p) ∪ {p} ∪ W c

+

loc
(p)

where q ∈ W c
−

loc
(p) implies ϕ(t, q) −→ p as t −→ +∞ and q ∈ W c

+

loc
(p) implies

ϕ(t, q) −→ p as t −→ −∞.

(2) The (n − 1)-dimensional local stable manifold W s

loc
(p) of p exists, is unique,

and if q ∈ W s

loc
(p) then ϕ(t, q) −→ p as t −→ +∞.

(3) There is a neighborhood N of p where the phase portrait of system (2.1) on N
is topologically equivalent to the phase portrait of Figure 1.

The stable and unstable manifolds of a hyperbolic equilibrium point are defined
extending the local manifolds through the flow [14]. Usually this technique to define
the global manifolds can not be applied to non-hyperbolic equilibrium points. How-
ever, in the particular case of a type-zero saddle-node non-hyperbolic equilibrium
point p, one still can define the global stable manifold W s(p) and the global center
manifold W c(p) extending the local manifold W s

loc
(p) and W c

loc
(p) through the flow

as follows:

W s(p) :=
⋃

t≤0

ϕ(t, W s

loc
(p))

W c(p) := W c
−

(p)
⋃

{p}
⋃

W c
+

(p)

where
W c

−

(p) :=
⋃

t≤0

ϕ(t, W c
−

loc (p) and W c
+

(p) :=
⋃

t≥0

ϕ(t, W c
+

loc(p)).

This extension is justified by the invariance and the asymptotic behavior of local
stable manifold W s

loc
(p) and of the local center manifold W c

loc
(p) given by item (1)

and (2) above.

Obviously, q ∈ W s(p) implies ϕ(t, q) −→ p as t −→ +∞, q ∈ W c
−

(p) implies

ϕ(t, q) −→ p as t −→ +∞, and q ∈ W c
+

(p) implies ϕ(t, q) −→ p as t −→ −∞.
In order to obtain more insights into the dynamical behavior of (2.1), in the

neighborhood of a type-zero saddle-node equilibrium point p, a neighborhood U ⊆
N of p will be decomposed into subsets U+ and U−. We define

U− := {q ∈ U : ϕ(t, q) → p as t → ∞} and U+ := U − U−.

For any neighborhood U ⊆ N of p, we obviously have U = U− ∪ U+.

4. Stability Boundary Characterization

In this section, an overview of the existing body theory about the stability boundary
characterization of nonlinear dynamical systems is presented.



Stability Boundary Characterization 115

Figure 1: The local manifolds W c
+

loc (p) and W s

loc(p) are unique, whereas there are infinite
choices for W c

−

loc (p). Three possible choices for W c
−

loc (p) are indicated in this figure.

Suppose xs is an asymptoticaly stable equilibrium point of (2.1). The stability
region (or basin of attraction) of xs is the set

A(xs) = {x ∈ R
n : ϕ(t, x) → xs as t → ∞},

of all initial conditions x ∈ R
n whose trajectories converge to xs when t tends to

infinity. The stability region A(xs) is an open and invariant set. Its closure A(xs) is
invariant and the stability boundary ∂A(xs) is a closed and invariant set. If A(xs)
is not dense in R

n, then ∂A(xs) is of dimension n − 1 [8].
The unstable equilibrium points that lie on the stability boundary ∂A(xs) play

an essential role in the stability boundary characterization.
Let xs be a hyperbolic asymptotically stable equilibrium point of (2.1) and

consider the following assumptions:
(A1) All the equilibrium points on ∂A(xs) are hyperbolic.
(A2) The stable and unstable manifolds of equilibrium points on ∂A(xs) satisfy the
transversality condition.
(A3) Trajectories on ∂A(xs) approaches one of the equilibrium points as t → ∞.

Assumptions (A1) and (A2) are generic properties of dynamical systems in the
form of (2.1). In other words, they are satisfied for almost all dynamical systems
in the form of (1) and, in practice, do not need to be verified. On the contrary,
assumption (A3) is not a generic property of dynamical systems and needs to be
checked. The existence of an energy function is a sufficient condition to guarantee
the satisfaction of (A3) [2].

Next theorem provides necessary and sufficient conditions to guarantee that an
equilibrium point lies on the stability boundary in terms of properties of its stable
and unstable manifolds.

Theorem 4.1 ([2]). Let xs be a hyperbolic asymptotically stable equilibrium point
of (2.1) and A(xs) be its stability region. If x∗ is an equilibrium point of (2.1) and
assumptions (A1)-(A3) are satisfied, then:
(i) x∗ ∈ ∂A(xs) if and only if Wu(x∗) ∩ A(xs) 6= ∅.
(ii) x∗ ∈ ∂A(xs) if and only if W s(x∗) ⊆ ∂A(xs).
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Exploring Theorem 4.1, next theorem provides a complete characterization of
the stability boundary ∂A(xs). It asserts that the stability boundary ∂A(xs) is the
union of the stable manifolds of the equilibrium points on ∂A(xs).

Theorem 4.2 ([2]). Let xs be a hyperbolic asymptotically stable equilibrium point
of (2.1) and A(xs) be its stability region. If assumptions (A1)-(A3) are satisfied,
then:

∂A(xs) =
⋃

i

W s(xi)

where xi, i = 1, 2, ... are the equilibrium points on ∂A(xs).

Theorem 4.2 provides a complete stability boundary characterization of system
(2.1) under assumptions (A1)-(A3). In this paper, we study the characterization
of the stability boundary when assumption (A1) is violated. In particular, we
study the stability boundary characterization when a type-zero saddle-node non-
hyperbolic equilibrium point lies on the stability boundary.

5. Saddle-Node Equilibrium Point on the Stability

Boundary

In this section, a complete characterization of the stability boundary in the presence
of a type-zero saddle-node equilibrium point is developed.

Next theorem offers necessary and sufficient conditions to guarantee that a type-
zero saddle-node equilibrium point lies on the stability boundary in terms of the
properties of its stable and center manifolds. They also provide insights into how to
develop a computational procedure to check if a type-zero saddle-node equilibrium
point lies on the stability boundary.

Theorem 5.1 (Type-zero saddle-node equilibrium point on the stability bound-
ary). Let p be a type-zero saddle-node equilibrium point of (2.1). Suppose also, the
existence of an asymptotically stable equilibrium point xs and let A(xs) be its sta-
bility region. Then the following holds:
(i) p ∈ ∂A(xs) if and only if W c

+

(p) ∩ A(xs) 6= ∅.
(ii) p ∈ ∂A(xs) if and only if (W s(p) − {p}) ∩ ∂A(xs) 6= ∅.

Proof. (i) (⇐=) Suppose that W c
+

(p)∩A(xs) 6= ∅. Then there exists x ∈ W c
+

(p)∩
A(xs). Note that ϕ(t, x) −→ p as t −→ −∞. On the other hand, set A(xs) is
invariant, thus ϕ(t, x) ∈ A(xs) for all t ≤ 0. As a consequence, p ∈ A(xs). Since
p /∈ A(xs), we have that p ∈ R

n − A(xs). Therefore, p ∈ ∂A(xs).
(i) (=⇒) Suppose that p ∈ ∂A(xs). Let B(q, ǫ) be a ball of radius ǫ centered at q

for some q ∈ W c
+

(p) and ǫ > 0. Consider a disk D of dimension n − 1 contained

in B(q, ǫ) and transversal to W c
+

(p) at q. As a consequence of λ-lemma for non-
hyperbolic equilibrium points [11], we can affirm that ∪t≤0ϕ(t, B(q, ǫ)) ⊃ U+ where
U is a neighborhood of p. Since p ∈ ∂A(xs), we have that U ∩ A(xs) 6= ∅. On
the other hand, U− ∩ A(xs) = ∅, thus U+ ∩ A(xs) 6= ∅. Thus, there exists a point
p ∈ B(q, ǫ) and a time t∗ such that ϕ(t∗, p) ∈ A(xs). Since A(xs) is invariant, we
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have that p ∈ A(xs). Since ǫ can be chosen arbitrarily small, we can find a sequence
of points {pi} with pi ∈ A(xs) for all i = 1, 2, ... such that pi −→ q as i −→ ∞, that

is, q ∈ A(xs). Since q ∈ W c
+

(p), we have that W c
+

(p) ∩ A(xs) 6= ∅.
The proof of (ii) is similar to the proof of (i) and will be omitted.

With some additional assumptions a sharper result regarding type-zero saddle-
node equilibrium points on the stable boundary is obtained.

Let xs be an asymptotically stable equilibrium point, p be a type-zero saddle-
node equilibrium point of (2.1), and consider the following assumptions:

(A1
′

) All the equilibrium points on ∂A(xs) are hyperbolic, except possibly for p.
(A4) The stable manifold of the equilibrium points on ∂A(xs) and the manifold

W c
+

(p) satisfy the transversality condition.
Under assumptions (A1

′

), (A3) and (A4), next theorem offers necessary and
sufficient conditions which are sharper than conditions of Theorem 5.1, to guarantee
that a type-zero saddle-node equilibrium point lies on the stability boundary of
nonlinear autonomous dynamical systems.

Theorem 5.2 (Further characterization of the type-zero saddle-node equilibrium
point on the stability boundary). Let p be a type-zero saddle-node equilibrium point
of (2.1). Suppose also, the existence of an asymptotically stable equilibrium point
xs and let A(xs) be its stability region. If assumptions (A1

′

), (A3) and (A4) are
satisfied, then
(i) p ∈ ∂A(xs) if and only if W c

+

(p) ∩ A(xs) 6= ∅.
(ii) p ∈ ∂A(xs) if and only if W s(p) ⊂ ∂A(xs).

Proof. (i) (⇐=) Suppose that W c
+

(p) ∩ A(xs) 6= ∅. Since W c
+

(p) ∩ A(xs) ⊂

W c
+

(p) ∩ A(xs) we have that W c
+

(p) ∩ A(xs) 6= ∅. Thus, from Theorem 5.1, one
concludes that p ∈ ∂A(xs).

(i)(=⇒) Suppose that p ∈ ∂A(xs). From Theorem 5.1, we can affirm that W c
+

(p)∩
A(xs) 6= ∅. We are going to show, under assumptions (A1

′

), (A3) and (A4), that

W c
+

(p) ∩ A(xs) 6= ∅ implies W c
+

(p) ∩ A(xs) 6= ∅. Let q ∈ W c
+

(p) ∩ A(xs). If q ∈
A(xs), then there is nothing to be proved. Suppose that q ∈ ∂A(xs). Assumption
(A3) asserts the existence of an equilibrium point x∗ ∈ ∂A(xs) such that ϕ(t, p) −→

x∗ as t −→ ∞. Since W c
−

(p)∩∂A(xs) = ∅ and W s(p)∩W c
+

(p) = ∅, we can affirm
that x∗ 6= p. As a consequence of (A1

′

), x∗ is a hyperbolic equilibrium point. Since

q ∈ W c
+

(p) ∩ W s(x∗), assumption (A4) implies that x∗ is a type-zero hyperbolic
equilibrium point. But this fact leads us to an absurd, since x∗ ∈ ∂A(xs). Therefore,

W c
+

(p) ∩ A(xs) 6= ∅.
(ii) (⇐=) Suppose that W s(p) ⊂ ∂A(xs). Since p ∈ W s(p), then p ∈ ∂A(xs).

(ii)(=⇒) Suppose that p ∈ ∂A(xs). From (i), we have that W c
+

(p)∩A(xs) 6= ∅. Let

w ∈ W c
+

(p) ∩ A(xs) and B(w, ǫ) be an open ball with an arbitrarily small radius
ǫ centered at w. Radius ǫ can be chosen arbitrarily small such that B(w, ǫ) ⊂
Aλ0

(xs

λ0
). Let q be an arbitrary point of W s(p) and consider a disk D that is

transversal to W s(p) at q and is unidimensional. As a consequence of λ-lemma
for non-hyperbolic equilibrium points [11], there exists an element z ∈ D and a
time t∗ > 0 such that ϕ(t∗, z) ∈ B(w, ǫ). Since A(xs) is invariant, we have that
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z ∈ A(xs). Since ǫ and the disk D can be chosen arbitrarily small, then there exist
points of A(xs) arbitrarily close to q. Therefore q ∈ A(xs). Since W s(p) cannot
contain points on A(xs), q ∈ ∂A(xs). Exploring the fact that q was arbitrarily
taken in W s(p), we can affirm that W s(p) ⊂ ∂A(xs).

Under assumptions (A1
′

), (A2) − (A4), and exploring the results of Theorems
4.1 and 5.2, we obtain the next corollary whose proof is analogous to the proof of
Theorem 5.2.

Corollary 5.2 (Hyperbolic equilibrium points on the stability boundary). Let p
be a type-zero saddle-node equilibrium point of (2.1). Suppose also, the existence of
a hyperbolic equilibrium point x∗ and an asymptotically stable equilibrium point xs,
and let A(xs) be the stability region of the latter. If assumptions (A1

′

), (A2)− (A4)
are satisfied, then
(i) x∗ ∈ ∂A(xs) if and only if Wu(x∗) ∩ A(xs) 6= ∅.
(ii) x∗ ∈ ∂A(xs) if and only if W s(x∗) ⊂ ∂A(xs).

Corollary 5.2 is a more general result than Theorem 4.2, since assumption (A1)
used in the proof of Theorem 4.2 is relaxed.

Exploring the results of Corollary 5.2 and Theorem 5.2, the next theorem pro-
vides a complete characterization of the stability boundary when a type-zero saddle-
node equilibrium point lies on ∂A(xs).

Theorem 5.3 (Stability Boundary Characterization). Let xs be an asymptotically
stable equilibrium point of (2.1) and A(xs) be its stability region. Suppose also, the
existence of a type-zero saddle-node equilibrium point p on the stability boundary
∂A(xs). If assumptions (A1

′

), (A2) − (A4) are satisfied, then

∂A(xs) =
⋃

i

W s(xi)
⋃

W s(p)

where xi, i = 1, 2, ... are the hyperbolic equilibrium points on ∂A(xs).

Proof. If the hyperbolic equilibrium point xi ∈ ∂A(xs), then, from Corollary 5.2,
we have that W s(xi) ⊂ ∂A(xs). Since p ∈ ∂A(xs), we have that W s(p) ⊂ ∂A(xs)
from Theorem 5.2. Therefore, ∪iW

s(xi)∪W s(p) ⊂ ∂Aλ0
(xs

λ0
). On the other hand,

from assumption (A3), if q ∈ ∂A(xs), then we have that ϕ(t, q) −→ xi for some i

or ϕ(t, q) −→ p as t −→ ∞. Since the intersection W c
−

(p) ∩ ∂A(xs) is empty, we
can affirm that q ∈ W s(xi) or q ∈ W s(p). Therefore, ∂A(xs) ⊂ ∪iW

s(xi) ∪ W s(p),
and the theorem is proven.

6. Example

Consider the system of differential equations

ẋ = x2 + y2 − 1
ẏ = x2 − y − 1

(6.1)
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with (x, y) ∈ R
2.

System (6.1) possesses, three equilibrium points; they are p = (0,−1), a type-
zero saddle-node equilibrium point, xs = (−1, 0), an asymptoticaly stable equilib-
rium point and x∗ = (1, 0), a type-one hyperbolic equilibrium point. Both the
type-zero saddle-node equilibrium point and type-one hyperbolic equilibrium point
belong to the stability boundary of xs = (−1, 0). The stability boundary ∂A(−1, 0)
is formed, according to Theorem 5.3, as the union of the stable manifold of the
type-one hyperbolic equilibrium point (1, 0) and the stable manifold of the type-
zero saddle-node equilibrium point (0,−1). See Figure 2.

Figure 2: The phase portait of system (6.1). The stability boundary of the asymptotically
stable equilibrium point (−1, 0) is composed of the stable manifold of the type-one hyper-
bolic equilibrium point (1, 0) union with the stable manifold of the type-zero saddle-node
equilibrium point (0,−1).

7. Conclusions

Necessary and sufficient conditions for a type-zero saddle-node equilibrium point
lying on the stability boundary were presented in this paper. These conditions pro-
vide insights into how to develop a computational procedure to check if a type-zero
saddle-node equilibrium point lies on the stability boundary. A complete character-
ization of the stability boundary when the system possesses a type-zero saddle-node
equilibrium point on the stability boundary was developed for a class of nonlinear
autonomous dynamical systems. This characterization is an important step to study
the behavior of the stability boundary under parameter variation.

Resumo. Sob a suposição que todos pontos de equilíbrio são hiperbólico, a fron-
teira da região de estabilidade de sistemas dinâmicos autônomos não lineares é
caracterizada como a união das variedades estáveis dos pontos de equilíbrio na fron-
teira da região de estabilidade. A caracterização existente da fronteira da região
de estabilidade é estendida neste artigo ao considerar a existência de pontos de
equilíbrio não hiperbólicos na fronteira da região de estabilidade. Em particular,
uma caracterização completa da fronteira da região de estabilidade é apresentada
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quando o sistema possui um ponto de equilíbrio sela-nó do tipo-zero na fronteira da
região de estabilidade. É mostrado que a fronteira da região de establidade consiste
das variedades estáveis de todos os pontos de equilíbrio hiperbólico na fronteira da
região de estabilidade e da variedade estável do ponto de equilíbrio sela-nó do tipo
zero.
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