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Abstract. In this work we propose a spatial model to analyze the foot and mouth
dissemination in Mato Grosso do Sul, Brazil. The model aims to study this dissem-
ination based on a system of partial differential reaction-diffusion equations taking
into account susceptible, infected (clinical and subclinical) and removed animal
subpopulations. Diffusion and advection are allowed for susceptible, subclinically
infected and removed subpopulations. The traveling wave solutions of the model
are searched in order to determine the speed of the disease dissemination. This
wave speed is obtained as a function of the model’s parameters, from which we
assess the control strategies.
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1. Introduction

Foot and mouth disease (FMD) is a highly transmissible viral infection, which
spreads very rapidly among animals, such as cattle, bovines, sheep and swine (very
low transmission). The transmission occurs directly or indirectly by animate and
inanimate vectors, and airborne route (droplets) [12].

In this work, we propose a PDE model to study the spatial dissemination of
FMD. In previous works, FMD modelings considered ODE models (see Keeling and
Rohani [4], chapter 4), and Individual Based models (Keeling et al. [2] and [3]).
In the ODE model the dynamics of FMD was studied considering two populations,
cattle and sheep, taking into account only two subpopulations, susceptible and
infected. Sheep are not very competent to transmit FMD, but the coexistence with
cattle can reverse this situation. In Individual Based Models, Keeling [2], [3], a
random spatial dissemination of FMD was studied considering the cow population
(only female subpopulation).
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In our work, we consider a PDE system to describe continuous dissemination.
We consider the susceptible, infected (clinical and subclinical) and recovered ani-
mals. The infected subpopulation is divided into two classes, clinical and subclinical,
because it is difficult to apply control strategies in the second state.

In the next section we propose the model and study the spatially homogeneous
dynamics. In section 3 we study the spatial dissemination using the traveling waves
solution. Conclusion are stated in section 4.

2. Model for Foot and Mouth Disease (FMD)

We present a spatial model for FMD propagation and the analysis of the corre-
sponding spatially homogeneous model for FMD.

2.1. Model for the spatial FMD dissemination

We propose a spatially homogeneous model for the animal population. The popu-
lation is divided into susceptible, infective (clinical and subclinical) and recovered
subpopulations, S(t), Is(t), Ic(t) and R(t), respectively. The total population is
N(t) = S(t) + Is(t) + Ic(t) + R(t), which is allowed to vary. Let us define φ as
the constant recruitment rate due to birth and migration (movement of animals
among farms), and the per-capita death rate as µ. The differential equation for the
population irrespective of FMD is, then

dN

dt
= φ− µN.

The infection rate per susceptible individuals is proportional to the infected
subpopulation, and is given by β(Is + Ic). It is assumed that subclinical infected
class pass through the clinical infected class at a rate γ. The clinical infected
class is recovered at a rate ǫ. A treatment in subclinical infected subpopulation is
considered, and they pass through recovered class at a rate τ . A death rate due to
the sacrifice of clinical infected class is considered, and is denoted by δ. Vaccination
and loss of immunity are considered, and they are denoted by ν and Π, respectively.

From now on we consider the spatio-temporal dependence in the populations,
e.g., N(x, t) and the respective subpopulations. The diffusion in susceptible and
recovered classes is denoted by D1, while D2 is designed for the diffusion of the sub-
clinical infected class. The clinical infected subpopulation is considered sessile, due
to sanitary control. The advection coefficients are denoted by λ1 for the susceptible
and recovered classes and λ2 for the subclinical infected class.

Based on the above assumptions and definitions of the parameters, the spatial
model (see [5], [6] for more details) is the following

∂S

∂t
= D1

∂2S

∂x2
− λ1

∂S

∂x
+ φ− βS(Is + Ic)− µS − νS +ΠR (2.1)

∂Is

∂t
= D2

∂2Is

∂x2
− λ2

∂Is

∂x
+ βS(Is + Ic)− µIs − γIs − τIs (2.2)
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∂Ic

∂t
= γIs − (µ+ ǫ + δ)Ic (2.3)

∂R

∂t
= D1

∂2R

∂x2
− λ1

∂R

∂x
+ ǫIc − µR + νS + τIs −ΠR. (2.4)

2.2. Model for the spatially homogeneous FMD dynamics

The spatially homogeneous model corresponding to the system (2.1) – (2.4) is the
following

dS

dt
= φ− βS(Is + Ic)− µS − νS +ΠR (2.5)

dIs

dt
= βS(Is + Ic)− µIs − γIs − τIs (2.6)

dIc

dt
= γIs − (µ+ ǫ+ δ)Ic (2.7)

dR

dt
= ǫIc − µR+ νS + τIs −ΠR. (2.8)

The system of equations (2.5) – (2.8) has two steady states. The first is the
disease-free equilibrium point given by

P0 = (Ŝ, 0, 0, R̂),

where Ŝ and R̂ are

Ŝ =
φ(µ +Π)

(µ+ ν)(µ+Π)−Πν
, R̂ =

νφ

(µ+ ν)(µ +Π)−Πν
,

with Ŝ and R̂ being always greater than zero.
The second one is the endemic state

P1 = (S∗, I∗
s
, I∗

c
, R∗),

where S∗, I∗
s
, I∗

c
and R∗ are given by

S∗ =
(δ + ǫ+ µ)(γ + µ+ τ)

β(δ + ǫ+ γ + µ)
, I∗

s
=

φ

[

1−
1

R0

]

[µ+ γ + τ ]−
Π

µ+Π

[

ǫγ

µ+ ǫ+ γ
+ τ

] ,

I∗
c

=
γI∗

s

µ+ ǫ+ δ
, R∗ =

[

τ +
ǫγ

µ+ ǫ + δ

]

I∗
s
+ νS∗

µ+Π
.

Since [µ+ γ + τ ]−
Π

µ+Π

[

ǫγ

µ+ ǫ+ γ
+ τ

]

is always positive, a positive solution

always exists for R0 > 1, where

R0 =
β(δ + ǫ+ γ + µ)

(δ + ǫ+ µ)(γ + µ+ τ)

φ(µ+Π)

(µ+ ν)(µ +Π)−Πν
(2.9)
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is the Basic Reproductive Number. For R0 < 1 the disease-free equilibrium point
P0 is locally asymptotically stable, otherwise the endemic state P1 is stable.

The following Theorem, with respect to these two equilibrium points, is estab-
lished

Theorem 2.1. The disease-free equilibrium P0 is unique and locally asymptotically

stable for R0 < 1. When R0 > 1, P0 becomes unstable, and the endemic equilibrium

P1 appears, which is locally asymptotically stable.

Proof. See Appendix.

In order to assign values for the parameters, we consider the cows as the animal
population. For the life expectancy we take µ−1 = 20 years. Considering the Mato
Grosso do Sul state, we have 25000000 animals in 358158.7 km2, then we take
φ

µ
= 70 per km2 [11]. We consider a latent period of 7 days and a subclinical period

of 3 days (Chowell et. al [1]), then we have γ−1 = 10 days. For the clinical onset
of disease we consider ǫ−1 = 5 days [12].

We estimate the contact rate by considering the susceptibility and transmission
rates of cows and sheep taken from Keeling and Rohani [4]. We consider the ODE
model in Chapters 4 for cattle and sheep, and the Individual Based model in chapter
7 for cows (only female subpopulation). FMD is better transmitted by cows than
sheep (ratio cow : sheep = 1.5098 : 1), and cows are more susceptible (ratio cow
: sheep = 10.5 : 1). Using these values we can estimate the contact rate β for
cows. Another fact that we take into account is that both models (our model and
the model proposed by Keeling and Rohani [4]) consider the pseudo mass action,
hence, the contact parameter must be scaled by the population size. We obtain
β = 0.00825078. We do not consider any control.

Figure 1 shows the dynamics of FMD disease. We can see the peak of the
infected subpopulation. The subclinical infected peak is greater than the clinical
one, and the subclinical infected burst occurs previously in time. The proportion of
clinical infected cows (see Figure 1) is closer to the proportion obtained for cattle in
the ODE model considering cattle and sheep proposed by Keeling and Rohane [4]
to study the Cuimbra FMD epidemic in 2001. Notice that as the cattle population,
cows are more susceptible and FMD is better transmitted by cows than sheep, then
we expect that the proportion of infected cattle is similar to that of infected cows.

3. Traveling Waves Solution

In this section we study the geographic propagation of FMD using the same method
applied to describe the dissemination of rabies among foxes [8], [7], that is, we
determine the minimum wave speed connecting the disease-free equilibrium point
and the endemic state. The solution corresponding to the minimum wave speed of
the system of equations (2.1) – (2.4) describes the observed biological waves, see
Volpert [10] and Sandstede [9].

The traveling waves solution, when it exists, can be set in the usual form [6]

(s(x, t), is(x, t), ic(x, t), r(x, t)) = (s(z), is(z), ic(z), r(z)), (3.1)
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Figure 1: Graph of the numbers of susceptible, subclinical and clinical infected
subpopulations. We can observe the epidemic burst, after the introduction of one
infected animal in subclinical condition. The initial values are S(0) = 70, Is(0) = 1,
Ic(0) = 0 and R(0) = 0. The subclinical infected peak is high, 40 infected cows of
70 cows, the total susceptible population in the disease-free equilibrium state. The
peak for infected clinical is lower, 15 individuals.

where z = x+ ct. In this new variable, the equations (2.1) – (2.4) are transformed
into

c
ds

dz
= D1

d2s

dz2
− λ1

ds

dz
+ φ− βs(is + ic)− µs− νs+Πr (3.2)

c
dis

dz
= D2

d2is

dz2
− λ2

dis

dz
+ βs(is + ic)− µis − γis − τis (3.3)

c
dic

dz
= γis − (µ+ ǫ+ δ)ic (3.4)

c
dr

dz
= D1

d2r

dz2
− λ1

dr

dz
+ ǫic − µr + νs+ τis −Πr. (3.5)

Defining the variables u1 =
ds

dz
, u2 =

dis

dz
, and u3 =

dr

dz
, the corresponding first

order ordinary differential equations with respect to variable z of the system (3.2)
– (3.5) is
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ds

dz
= u1 (3.6)

du1

dz
=

1

D1

[(c+ λ1)u1 − φ+ βs(is + ic) + µs+ νs−Πr] (3.7)

dis

dz
= u2 (3.8)

du2

dz
=

1

D2

[(c+ λ2)u2 − βs(is + ic) + µis + γis + τis] (3.9)

dic

dz
=

1

c
[γis − (µ+ ǫ+ δ)ic] (3.10)

dr

dz
= u3 (3.11)

du3

dz
=

1

D1

[(c+ λ1)u3 − ǫic + µr − νs− τis +Πr] , (3.12)

where the boundary conditions are

lim
z→−∞

(sa(z), u1(z), ia(z), u2(z), iv(z), na(z), u3(z)) = (Ŝ, 0, 0, 0, 0, R̂, 0) (3.13)

and

lim
z→∞

(sa(z), u1(z), ia(z), u2(z), iv(z), na(z), u3(z)) = (S∗, 0, I∗
s
, 0, I∗

c
, R∗, 0). (3.14)

The zeros in both equilibrium points deserve some comments. The three zeros in
the second equilibrium point correspond to derivatives of the subpopulations s, is
and r. However, the first equilibrium point has two more zeros corresponding to
infectious populations regarding to clinical and subclinical cases, which must not
assume negative values. Due to this constraint, we impose to the linear system solu-
tions that must not oscillate, i.e., the eigenvalues corresponding to this equilibrium
point must assume real values.

The roots of the characteristic polynomial regarding the linear system at the
equilibrium point (sa, u1, ia, u2, iv, na, u3) = (Ŝ, 0, 0, 0, 0, R̂, 0) are the roots of the
polynomials Q1(λ), Q2(λ) and P (λ), where

Q1(λ) = D1λ
2
− (c+ λ1)λ− µ, (3.15)

Q2(λ) = D1λ
2
− (c+ λ1)λ− (µ+ ν +Π) (3.16)

and

P (λ) = D2λ
3 +Aλ2 + Bλ+ C, (3.17)
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which has the coefficients

A = −(c+ λ2) +
(δ + ǫ+ µ)D2

c
,

B = −(τ + γ + µ) + βŜ −
(δ + ǫ+ µ)(c+ λ2)

c
,

C =
(δ + ǫ+ µ)(γ + µ+ τ)

c
(R0 − 1),

(3.18)

with R0 being given by (2.9). Polynomials Q1(λ) and Q2(λ) always have real
roots. Then the polynomial P (λ) must determine the conditions for the existence
of the minimum speed, that is, the eigenvalues are real. The minimum velocity
is determined by the condition that the polynomial evaluated at the unique local
minimum, λ+, must be zero, that is, P (λ+) = 0, where

λ+ =
1

3D2

{

−A+
√

A2 − 3B
}

.

In Figure 2 the wave speed varying as a function of the diffusion coefficient is
shown. We can observe the importance of the direct transmission in the disease
spread. This is a consequence of the high contact rate. For a diffusion coefficient
value of 100 m2 per day, the wave speed is 457.417 m per day.
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Figure 2: Graph of the wave speed as a function of the diffusion coefficient for the
parameters listed in the previous section.
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4. Conclusion

In this paper we developed a spatial propagation model to understand the dissemi-
nation of the FMD. For the spatially homogeneous dynamics we determined, in non
dimensional parameters, the threshold value

R0 =
β(δ + ǫ+ γ + µ)

(δ + ǫ+ µ)(γ + µ+ τ)

φ(µ +Π)

(µ+ ν)(µ+Π)−Πν
. (4.1)

When R0 is greater than one, the endemic state of the disease exists. We study
the wave speed for the traveling waves connecting this endemic point with the
disease-free equilibrium point. An equation for the minimum speed was determined
as a function of the parameters of the model and the threshold R0.

We use this equation to determine the wave speed as a function of the diffusion
coefficient. Foot and mouth disease spreads by direct contact between animals
and indirectly by vectors (animate or inanimate). We can observe that the direct
transmission must be considered as important route in the disease spreading. This
is a consequence of the high value of the direct contact rate for this disease.

A Stability Analysis

In this section we analyze the stability of the equilibrium points.

1.1. Stability of P0 = (Ŝ, 0, 0, R̂)

By linearizing the system (2.5) – (2.8) at the equilibrium point P0 we obtain the
jacobian matrix

J(P0) =





























−µ− ν −
βφ(µ + φ)

µ(µ+ φ+ ν)
−

βφ(µ + φ)

µ(µ+ φ+ ν)
π

0 −µ− γ − τ +
βφ(µ + φ)

µ(µ+ φ+ ν)

βφ(µ+ φ)

µ(µ+ φ+ ν)
0

0 γ −δ − ǫ− µ 0

ν τ ǫ −µ− π





























.

The eigenvalues are −µ, −µ− ν − π, and the roots of the polynomial

p1(λ) = λ2 +
[

δ + ǫ+ γ + 2µ+ τ − βŜ
]

λ+ (ǫ + δ + µ)(τ + γ + µ)(1 −R0).

It is easy to check for R0 < 1, that

δ + ǫ+ γ + 2µ+ τ − βŜ > δ + ǫ+ γ + 2µ+ τ −
(δ + ǫ+ µ)(γ + µ+ τ)

δ + ǫ+ γ + µ
>

(δ + ǫ+ γ + 2µ+ τ)(δ + ǫ+ γ + µ)− (δ + ǫ+ µ)(γ + µ+ τ) > 0.

Then, all coefficients of polynomial p1(λ) are positive if and only if R0 < 1.
Therefore, P0 is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.



Spatial Model to Describe Foot and Mouth Disease Dissemination 19

1.2. Stability of P1 = (S∗, I∗
s
, I∗

c
, R∗)

The non trivial equilibrium point P1 exists if and only if R0 > 1. This condition
implies that S∗ ≥ 0, I∗

s
≥ 0, I∗

c
≥ 0 and R∗ ≥ 0. We use these facts in the proof of

this Theorem. The local stability is determined by the roots of Det(λId− J(P1)),
where J(P1) is given by

J(P 1) =





















−(I∗
s
+ I∗

c
)β − µ− ν −S∗β −S∗β π

−(I∗
s
+ I∗

c
)β S∗β − γ − µ− τ −S∗β 0

0 −γ −δ − ǫ− µ 0

ν τ ǫ −µ− π





















where Id is a 4 × 4 identity matrix. For simplicity, we consider the case without
loss of immunity (π = 0), which is due to an effective vaccine.

The eigenvalues at the point P1(π = 0) are −µ, for instance, see that the fourth
column of J(P1(π = 0)) has three zeros, and the other roots are given by the
polynomial

p2(λ) = λ3 + a2λ
2 + a1λ+ a0,

where

a2 = β(I∗
c
+ I∗

s
)− βS∗ + γ + δ + ǫ+ 3µ+ ν + τ ,

a1 = −βS∗(γ + ǫ+ δ + 2µ+ ν) + γδ + γǫ+ 2γµ+ 2δµ+ 2δǫ+ 3µ2 + γν + δν + ǫν+

+2µν + δτ + ǫτ + 2µτ + ντ + β(I∗
c
+ I∗

s
)(γ + δ + ǫ+ 2µ+ τ),

a0 = β(I∗
c
+ I∗

s
)(δ + ǫ+ µ)(γ + µ+ τ).

From the Routh-Hurwitz criteria, it follows that all eigenvalues have negative real
part if and only if, a2 > 0, a0 > 0 and a2a1 > a0. Trivially, we have a0 > 0.

Using that S∗ =
(γ + µ+ τ)(µ + ǫ+ δ)

β(µ+ ǫ+ δ + γ)
, a1 and a2 become

a1 = (µ+ ǫ + δ)(µ+ ν) +
(µ+ ν)(µ+ γ + τ)γ

µ+ ǫ+ δ + γ
+ (γ + δ + ǫ+ 2µ+ τ)β(I∗

c
+ I∗

c
) > 0

and

a2 =
(µ+ γ + τ)γ

µ+ ǫ+ δ + γ
+ β(I∗

c
+ I∗

s
) + δ + ǫ+ 2µ+ ν > 0.

Finally, we have

a1a2 > [(γ + µ+ τ)β(I∗
c
+ I∗

s
)][δ + ǫ+ µ] = a0.

Then the equilibrium point P1 is locally asymptotically stable if and only if
R0 > 1.
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Resumo. Neste trabalho propomos um modelo espacial para estudar a propagação
de febre aftosa no Estado de Mato Grosso do Sul, Brasil. O objetivo é o estudo
da disseminação por meio de um sistema de equações diferenciais parcias de reação
difusão considerando subpopulações de animais suscetíveis, infectados (clínicos e
subclínicos) e recuperados. Estudamos as soluções onda viajantes para determinar
a velocidade da disseminação da doença. Esta velocidade é determinada como
função dos parâmetros do modelo a fim de estabelecer estratégias de controle.
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