Soluções de Problemas envolvendo Equações Diferenciais Sujeitas a Incertezas

Fábio Antonio Dorini, Maria Cristina de Castro Cunha, Saulo P. Oliveira

Abstract


Este trabalho objetiva analisar, através de alguns exemplos, a influência de se considerar aleatoriedades na solução de equações diferenciais com dados e/ou parâmetros aleatórios. Um comparativo das médias das soluções das equações estocásticas com as soluções das equações determinísticas simplificadas, nas quais substituímos os parâmetros aleatórios por suas médias, é apresentado. Estes exemplos mostram que a média da solução, que normalmente é uma informação relevante em aplicações, pode ser qualitativamente diferente da aproximação obtida pela solução de uma equação diferencial determinística na qual substituímos os parâmetros aleatórios por suas médias.

References


[1] J.S. Azevedo, S.P. Oliveira, O. A. L. Lima, Métodos estocásticos para modelagem de escoamento estacionário e transiente em meios porosos. Rev. Bras. Geof., 27 (2009), 241–254.

[2] M.R. Borges, F. Furtado, F. Pereira, H.P.A. Souto, Scaling analysis for the tracer flow problem in self-similar permeability fields. Multiscale Model. Simul., 7 (2008), 1130–1147.

[3] J.M. Burgers, A mathematical model illustrating the theory of turbulance. Ad. Appl. Mech., 1 (1948), 171–179.

[4] P.L. Chow, “Stochastic Partial Differential Equations”, Chapman & Hall/CRC, New York, 2007.

[5] M.C.C. Cunha, F.A. Dorini, Statistical moments of the solution of the random Burgers-Riemann problem. Math. Comput. Simulation, 79 (2009), 1440–1451.

[6] F.A. Dorini, M.C.C. Cunha, Soluções de problemas envolvendo equações diferenciais em que existem incertezas, em “Anais do XXXIII Congresso Nacional de Matemática Aplicada e Computacional”, Águas de Lindóia, SP, 3 (2010), 180–186.

[7] R. Durrett, “Stochastic Calculus: a practical introduction”, CRC Press, New York, 1996.

[8] G.S. Fishman, “Monte Carlo: concepts, algorithms and applications”, Springer- Verlag, New York, 1996.

[9] D. Gottlieb, D. Xiu, Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys., 3 (2008), 505–518.

[10] I. Karatzas, S.E. Shreve, “BrownianMotion and Stochastic Calculus”, Springer-Verlag, New York, 1988.

[11] V. Klyatskin, “Stochastic Equations and Waves in Randomly Inhomogeneous Media”, Nauka, Moscou, 1980.

[12] T.W. Korner, “Fourier Analysis”, Cambridge University Press, Cambridge, 1988.

[13] R.J. LeVeque, “Numerical Methods for Conservation Laws”, Birkhäuser, Berlin, 1992.

[14] B.K. Oksendal, “Stochastic Differential Equations: an introduction with applications”, Springer, New York, 2000.

[15] A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, McGraw-Hill, Inc., New York, 1984.

[16] S.B. Pope, Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech., 26 (1994), 23–63.

[17] L.T. Santos, F.A. Dorini, M.C.C. Cunha, The probability density function to the random linear transport equation. Appl. Math. Comput., 216 (2010), 1524–1530.

[18] M. Shvidler, K. Karasaki, Exact averaging of stochastic equations for transport in random velocity field. Transp. Porous Media, 50 (2003), 223–241.

[19] T.T. Soong, “Random Differential Equations in Sciences and Engineering”, Academic Press, New York, 1973.

[20] D. Xiu, “Numerical Methods for Stochastic Computations: a spectral method approach”, Princeton University Press, Princeton, 2010.

[21] E. Zauderer, “Partial Differential Equations of Applied Mathematics”, John Wiley & Sons, New York, 1983.

[22] D. Zhang, “Stochastic Methods for Flow in Porous Media - Coping with Uncertainties”, Academic Press, San Diego, 2002.




DOI: https://doi.org/10.5540/tema.2011.012.02.0111

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

         

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia