Explorando Longo Período de Interação entre Sistema Imunológico e HIV
DOI:
https://doi.org/10.5540/tema.2010.011.02.0159Abstract
O Vírus da Imunodeficiência Humana (HIV), infectando células TCD4 +, consegue comprometer gravemente o funcionamento do Sistema Imunológico, resultando em AIDS. Formulamos e analisamos três modelos matemáticos para este processo de infecção. Foi possível encontrar um limiar para a permanência do vírus na corrente sanguínea e evidenciar a necessidade da apoptose de células ativadas, após a eliminação do antígeno. Através da introdução de um termo de exaustão cumulativa (resultado da constante tentativa do sistema imunológico responder à infecção pelo HIV) também reproduzimos a diminuição do número de células T-CD4+ ao longo dos anos.References
[1] A.K. Abbas, “Imunologia Celular e Molecular”, Elsevier, Rio de Janeiro, 2005.
[2] F. Barré-Sinoussi et al. Isolation of a T-lymphotropic retrovírus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220 (1983), 868–871.
[3] S. Barrozo, H.M. Yang, Mecanismos da iteração antígeno-anticorpo em uma resposta primária célula T-mediada, Tend. Mat. Apl. Comput., 7, No.1 (2006)43–52.
[4] S. Barrozo, H.M. Yang, Desenvolvimento de um modelo para resposta imunológica primária célula-mediada, Tend. Mat. Apl. Comput., 7, No.1 (2006) 31–41.
[5] P.F. Bonolo et al. Adesão à terapia anti-retroviral (HIV/aids): fatores associados e medidas da adesão, Epidemiol. Serv. Saúde 16 (2007), 251–259.
[6] R.C. Gallo, P.S. Sarin, E.P. Gelmann et al. Isolation of human T-cell leukemia virus in acquired immunodeficiency syndrome (Aids). Science, 220 (1983), 865–867.
[7] A. Hughes, T. Barber, M. Nelson, New treatment options for HIV salvage patients: An overview of second generation Pis, NNRTIs, integrase innibitors and CCR5 antagonists. J. Infect, London, 57 (2008), 1–10.
[8] C.A. Janeway Jr., How the immune system reconizes invaders. Scientific American, 269 (1993), 73–79.
[9] H. Kim, A.S. Perelson, Viral and Latent Reservoir Persistence in HIV-1-Infected Patients on Therapy, PLoS Cumput. Biol. 2 (2006), 1232–1247.
[10] M. Oprea, A.S. Perelson, Exploring the mechanisms of primary antibory responses to T-cell dependent antigens, J. Theor. Biol., 181 (1996), 215–236.
[11] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, Society for Industrial and Applied Mathematics, 41 (1999), 3–44
[12] R.J. Smith, B.D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, J. Math. Biol., 59 (2009), 697–715.
[13] R.J. Smith, Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts long-term failure of protease-onli therapy Journal of Theoretical Biology, 251 (2008), 227–237.
[14] L. Sompayrac, “How Pathogenic Vírus Work”, Jones and Bartlett Publishers, Massachusetts, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.