Ideal and Resistive Magnetohydrodynamic Two-Dimensional Simulation of the Kelvin-Helmholtz Instability in the Context of Adaptive Multiresolution Analysis
DOI:
https://doi.org/10.5540/tema.2017.018.02.0317Keywords:
Magnetohydrodynamics, Kelvin-Helmholtz instability, Adaptive multiresolution analysis, Numerical simulationAbstract
This work is concerned with the numerical simulation of the Kelvin-Helmholtz instability using a two-dimensional resistive magnetohydrodynamics model in the context of adaptive multiresolution approach. The Kelvin-Helmholtz instabilities are caused by a velocity shear and normally expected in a layer between two fluids with different velocities. Due to its complexity, this kind of problem is a well-known test for numerical schemes and it is important for the verification of the developed code. The aim of this paper is to compare our solution with the solution of the well known astrophysics FLASH code to verify our code in respect to this reference.References
A. Frank, T. W. Jones, D. Ryu, and J. B. Gaalaas. The magnetohydrody-
namic Kelvin-Helmholtz instability: A two-dimensional numerical study. The
Astrophysical Journal, 460:777, 1996.
A. Harten. Multiresolution representation of data: a general framework. SIAM Journal of Numerical Analysis, 33(3):385–394, 1996.
O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative fully adaptive multiresolution algorithm for parabolic {PDEs}. Journal of Computational Physics, 188(2):493 – 523, 2003.
A. K. F. Gomes. Análise multirresolução adaptativa no contexto da resolução numérica de um modelo de magnetohidrodinâmica ideal. Master’s thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2012.
M. O. Domingues, A. K. F. Gomes, S. M. Gomes, O. Mendes, B. Di Pierro,
and K. Schneider. Extended generalized lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods. ESAIM Proceedings, 43:95–107, 2013.
A. K. F. Gomes, M. O. Domingues, K. Schneider, O. Mendes, and R. Deiterding. An adaptive multiresolution method for ideal magnetohydrodynamics using divergence cleaning with parabolic–hyperbolic correction. Applied Numerical Mathematics, 95:199 – 213, 2015.
B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes. The
Astrophysical Journal Supplement Series, 131:273–334, November 2000.
R. J. Hosking and R. L. Dewar. Fundamental Fluid Mechanics and Magnetohydrodynamics. Springer Singapore, 2016.
M. O. Domingues, R. Deiterding, S. M. Gomes, and K. Schneider. Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible euler equations. SIAM Journal on Scientific Computing, in press.
K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw. A Solution-Adaptative Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, 154:284–309, 1999.
A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175:645–673, 2002.
A. Mignone and P. Tzeferacos. A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme. Journal of Computational Physics, 229(6):2117–2138, 2010.
T. Miyoshi and K. Kusano. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. Journal of Computational Physics, 208:315–344, 2005.
E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag Berlin Heidelberg, 1999.
M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider. Adaptive
multiresolution methods. ESAIM Proceedings, 34:1–96, 2011.
E. F. D. Evangelista, M. O. Domingues, O. Mendes, and O. D. Miranda. A brief study of instabilities in the context of space magnetohydrodynamic simulations. Revista Brasileira de Ensino de Física, 38(1), 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.