The Influence of Velocity Field Approximations in Tracer Injection Processes
DOI:
https://doi.org/10.5540/tema.2018.019.02.347Keywords:
Miscible displacements, Hybridized method, Oil reservoir simulationsAbstract
Although the concentration is the most important variable in tracer injection processes, an efficient and accurate velocity field approximation is crucial to obtain a good physical behaviour for the problem. In this paper we analyse a Stabilized Dual Hybrid Mixed (SDHM) method to solve the Darcy's system in the velocity and pressure variables that involves the conservation of mass and Darcy's law. This approach is locally conservative, free of compromise between the finite element approximation spaces and capable of dealing with heterogeneous media with discontinuous properties. The tracer concentration is solved via a combination of the Streamline Upwind Petrov-Galerkin (SUPG) method in space with an implicit finite difference scheme in time. We also employ a semi-analytical approach (Abbaszadeh-Dehghani analytical solution) to integrate the transport equation. A numerical comparative study using the SDHM formulation, the Galerkin method and a post-processing technique to calculate the velocity field in combination with those concentration approximation methodologies are presented. In all comparisons, the SDHM formulation appears as the most efficient, accurate and almost free of spurious oscillations.References
P. A. Raviart and J. M. Thomas, “A mixed finite element method for second order elliptic problems,” in Lecture Notes in Math (1. Galligani and E. Magenes, eds.), vol. 606, New York, Springer—Verlag, 1977.
F. Brezzi, J. Douglas, and L. D. Marini, “Two families of mixed finite elements for second order elliptic problems,” Numerisehe Mathematik, vol. 47, pp. 217--235, 1985.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer—Verlag, 1991.
J. J. Douglas, R. E. Ewing, and M. F. Wheeler, “The approximation of the pressure by a Mixed—Method in the simulation of miscible displacement,” R.A.I.R.O. Analyse Numerique, vol. 17, pp. 17--33, 1983.
B. L. Darlow, R. E. Ewing, and M. F. Wheeler, “Mixed finite element method for miscible displacement problems in porous media,” SPE Journal, pp. 391--398, 1984.
F. Brezzi, “On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers,” Analyse Numérique/Numerical Analysis (RAIRO), vol. 8(R—2), pp. 129--151, 1974.
M. R. Correa and A. F. D. Loula, “Unconditionally stable mixed finite element methods for Darcy flow,” Computer Methods in Applied Mechanics and Engineering, vol. 197, pp. 1525--1540, 2008.
J. J. Douglas and J. Wang, “An absolutely stabilized finite element method for the Stokes problem,” Math. Comput., vol. 52(186), pp. 495--508, 1989.
A. F. D. Loula, F. A. Rochinha, and M. A. Murad, “Higher—order gradient post—processings for second—order elliptic problems,” Computer Methods in Applied Mechanics and Engineering, vol. 128, pp. 361--381, 1995.
A. Masud and T. J. R. Hughes, “A stabilized finite element method for Darcy flow,” Computer. Methods Appl. Mech. Engrg, vol. 191, pp. 4341--4370, 2002.
G. Barrenechea, L. P. Franca, and F. Valentin, “A Petrov—Galerkin enriched method: A mass conservative finite element method for the Darcy equation,” Computer Methods in Applied Mechanics and Engineering, vol. 196, pp. 2449--2464, 2007.
M. R. Correa and A. F. D. Loula, “Stabilized velocity post—processings for Darcy flow in heterogenous porous media,” Communications in Numerical Methods in Engineering, vol. 23, pp. 461--489, 2007.
I. H. A. da Igreja, Métodos de elementos finitos hibridos estabilizados para escoamentos de Stokes, Darcy e Stokes—Darcy acoplados. PhD thesis, Laboratório Nacional de Computacao Cientifica, Petrépolis, Brasil, 2015.
T. P. Barrios, J. M. Cascén, and M. Gonzalez, “A posteriori error analysis of an augmented mixed finite element method for Darcy flow,” Computer Methods in Applied Mechanics and Engineering, vol. 283, pp. 909--922, 2015.
B. Riviere, Discontinuous Calerkin Methods For Solving Elliptic And Parabolic Equations: Theory and Implementation. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008.
Y. R. Nunez, Métodos de elementos finitos hibridos aplicados a escoamentos misciveis em meios porosos heterogêneos. PhD thesis, Laboratório Nacional de Computacao Cientifica, Petrépolis, Brasil, 2014.
Y. R. Nunez, C. O. Faria, A. F. D. Loula, and S. M. C. Malta, “A mixe-hybrid finite element method applied to tracer injection processes,” International Journal of Modeling and Simulation for the Petroleum Industry, vol. 6(1), pp. 51-59, 2012.
Y. R. Nunez, C. O. Faria, A. F. D. Loula, and S. M. C. Malta, “A hybrid finite element method applied to miscible displacements in heterogeneous porous media,” Rev. Int. de Métodos Numér. Ca’lc. Diseno Ing., vol. 33(1-2), pp. 45--51, 2017.
S. M. C. Malta, A. F. D. Loula, and E. L. M. Garcia, “Numerical analysis of a stabilized finite element method for tracer injection simulations,” Comput. Methods Appl. Mech. Engrg., vol. 187, pp. 119--136, 2000.
S. M. C. Malta and A. F. D. Loula, “Numerical analysis of finite element
method for miscible displacements in porous media,” Numerical Methods in
Partial Difierential Equations, vol. 14, pp. 519--548, 1998.
M. Abbaszadeh—Dehghani and W. E. Brigham, “Technical report,” Stanford University, 1982.
D. W. Peaceman, Fundamental of Numerical Reservoir Simulation. Elsevier, Amsterdam, 1977.
D. N. Arnold and F. Brezzi, “Mixed and nonconforming finite element
methods: implementation, post—processing and error estimates,” RAIRO
MMAN, vol. 19(7), pp. 7-32, 1985.
R. E. Ewing, J. Wang, and Y. Yang, “A stabilized discontinuous finite element method for elliptic problems,” Numerical Linear Algebra with Applications, vol. 10, pp. 83--104, 2003.
D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis
of discontinuous galerkin methods for elliptic problems,” SIAM Journal on
Numerical Analysis, vol. 39(5), pp. 1749--1779, 2002.
I. Harari, “Stability of semidiscrete formulations for parabolic problems at small time steps,” Comput. Methods Appl. Mech. Engrg., vol. 193, pp. 1491--1516, 2004.
A. N. Brooks and T. J. R. Hughes, “Streamline Upwind Petrov—Galerkin Formulations for Convection—Dominated flows with Particular emphasis on the Incompressible Navier—Stokes equations,” Comput. Methods Appl. Mech. Engrg., vol. 32, pp. 199--259, 1982.
A. Datta—Gupta and M. J. King, “A semianalytic approach to tracer flow modeling in heterogeneous permeable media,” Advances in Water Resources, Vol. 18(1)7 pp. 9--24, 1995.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.