Um Modelo Matemático para Estimativas do Consumo de Energia em Redes de Sensores Visuais sem Fio
DOI:
https://doi.org/10.5540/tema.2019.020.02.257Keywords:
Rede de sensores Visuais sem fio, Modelagem matemática, Consumo de energia,Abstract
As redes de sensores sem fio alcançaram um papel de destaque no cenário atual das novas de tecnologias de comunicação, centradas em aplicações de Internet das Coisas e Cidades Inteligentes, sobretudo quando câmeras são utilizadas para obter dados visuais do ambiente monitorado. Nessas redes, questões de eficiência energética são centrais, uma vez que, frequentemente, sensores são alimentados por bateria. Para tanto, um correto e eficiente planejamento energético de redes de sensores sem fio é fundamental para diversas aplicações, levando à escolha mais apropriada dos sensores, dos protocolos de comunicação e das unidades de monitoramento. Visando dar suporte a estimativas de desempenho de redes de sensores visuais sem fio, permitindo análises teóricas sem necessitar da implantação física das redes, este artigo propõe um novo modelo matemático para estimativas de consumo de energia de sensores equipados com câmeras, permitindo importantes avaliações de desempenho antes da implantação da rede real. Além do modelo é apresentada uma nova ferramenta computacional, EnergyWVSN, desenvolvida para facilitar o uso prático do modelo proposto.References
D. G. Costa, L. A. Guedes, F. Vasques, and P. Portugal, “Um protocolo genérico eficiente de energia para aplicações em redes de sensores sem fio sem restrição de tempo de resposta,” Revista de Tecnologia da Informação e Comunicação, 2015.
J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.
P. H. F. Machado and L. Souza, “Proposiçao e modelagem de uma rede de sensores sem fio de baixo custo,” XI Simpósio Brasileiro de Automaçao Inteligente, pp. 1–6, 2013.
B. Lacerda and P. U. Lima, “Petri nets as an analysis tool for data flow in
wireless sensor networks,” in 1st Portuguese Conference on WSNs, Coimbra, Portugal, pp. 1–6, 2011.
C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service model for smart cities supported by internet of things,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 1, pp. 81–93, 2014.
K. Su, J. Li, and H. Fu, “Smart city and the applications,” in Electronics,
Communications and Control (ICECC), 2011 International Conference on,
pp. 1028–1031, IEEE, 2011.
D. G. Costa, M. Collotta, G. Pau, and C. Duran-Faundez, “A fuzzy-based
approach for sensing, coding and transmission configuration of visual sensors
in smart city applications,” Sensors, pp. 1–17, 2017.
F. G. H. Yap and H.-H. Yen, “A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks,” Sensors, vol. 14, no. 2, pp. 3506–3527, 2014.
D. G. Costa, Otimizações da transmissão de imagens em redes de sensores visuais sem fio explorando a relevância de monitoramento dos nós fontes e codificação DWT. PhD thesis, Universidade Federal do Rio Grande do Norte, 2013.
A. Shareef and Y. Zhu, “Energy modeling of wireless sensor nodes based on petri nets,” in 2010 39th International Conference on Parallel Processing, pp. 101–110, IEEE, 2010.
A. Mammeri, A. Khoumsi, D. Ziou, and B. Hadjou, “Modeling and adapting jpeg to the energy requirements of vsn,” in Computer Communications and Networks, 2008. ICCCN’08. Proceedings of 17th International Conference on, pp. 1–6, IEEE, 2008.
V. Lecuire, C. Duran-Faundez, and N. Krommenacker, “Energy-efficient image transmission in sensor networks,” International Journal of Sensor Networks, vol. 4, no. 1-2, pp. 37–47, 2008.
A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy analysis of public-key cryptography for wireless sensor networks,” in Pervasive Computing and Communications, 2005. PerCom 2005. Third IEEE International Conference on, pp. 324–328, IEEE, 2005.
M. R. Doomun, K. S. Soyjaudah, and D. Bundhoo, “Energy consumption
and computational analysis of rijndael-aes,” in Internet, 2007. ICI 2007. 3rd
IEEE/IFIP International Conference in Central Asia on, pp. 1–6, IEEE, 2007.
A. Shareef and Y. Zhu, “Energy modeling of processors in wireless sensor networks based on petri nets,” in Parallel Processing-Workshops, 2008. ICPP-W’08. International Conference on, pp. 129–134, IEEE, 2008.
M. A. Azgomi and A. Khalili, “Performance evaluation of sensor medium access control protocol using coloured petri nets,” Electronic Notes in Theoretical Computer Science, vol. 242, no. 2, pp. 31–42, 2009.
N. Costa, J. Silva, and J. L. Silva, “Real-time app development approach for indoor monitoring,” in Information Systems and Technologies (CISTI), 2017 12th Iberian Conference on, pp. 1–4, IEEE, 2017.
L. Mokdad, J. Ben-Othman, B. Yahya, and S. Niagne, “Performance evaluation tools for qos mac protocol for wireless sensor networks,” Ad Hoc Networks, vol. 12, pp. 86–99, 2014.
H. Zhang, S. Zhang, and W. Bu, “A clustering routing protocol for energy
balance of wireless sensor network based on simulated annealing and genetic algorithm,” International Journal of Hybrid Information Technology, vol. 7, no. 2, pp. 71–82, 2014.
M. Elhoseny, X. Yuan, Z. Yu, C. Mao, H. K. El-Minir, and A. M. Riad, “Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm,” IEEE Communications Letters, vol. 19, no. 12, pp. 2194– 2197, 2015.
G. Han, L. Liu, J. Jiang, L. Shu, and G. Hancke, “Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 135–143, 2017.
M. B. M. Taj and M. A. Kbir, “The impact of mac protocols in energy consumption of transferring multimedia contents using castalia simulator,” 2nd International Conference on Electrical and Information Technologies ICEIT’2016, pp. 521–525, 2016.
J. H. B. Neto, J. C. Júnior, and L. S. Rocha, “A new flow network approach for improving clustering protocols in wireless sensor networks,” in Advanced Information Networking and Applications (AINA), 2017 IEEE 31st International Conference on, pp. 285–291, IEEE, 2017.
J.-S. Leu, T.-H. Chiang, M.-C. Yu, and K.-W. Su, “Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes,” IEEE communications letters, vol. 19, no. 2, pp. 259–262, 2015.
P. Baldan, N. Cocco, A. Marin, and M. Simeoni, “Petri nets for modelling
metabolic pathways: a survey,” Natural Computing, vol. 9, no. 4, pp. 955–989, 2010.
E. Sun, X. Shen, and H. Chen, “A low energy image compression and transmission in wireless multimedia sensor networks,” Procedia Engineering, vol. 15, pp. 3604–3610, 2011.
V. Lecuire, C. Duran-Faundez, and N. Krommenacker, “Energy-efficient transmission of wavelet-based images in wireless sensor networks,” Journal on Image and Video Processing, vol. 2007, no. 1, pp. 15–15, 2007.
R. Neto, O. de Araújo, et al., “Estudo e implementação de ip-cores para criptografia simétrica baseada no advanced encryption standard (aes),” Master’s thesis, Universidade Federal da Paraíba, 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.