Princípios de Processamento Digital de Sinais Intervalares

Authors

  • R.M.P. Trindade
  • B.R.C Bedregal
  • A.D. Dória Neto

DOI:

https://doi.org/10.5540/tema.2009.010.01.0087

Abstract

Este trabalho propõe uma versão intervalar dos princípios básicos de processamento digital de sinais intervalares e aborda analiticamente sistemas lineares intervalares com uma perspectiva de aplicação em processamento digital de sinais. Para isso, estendem-se as propriedades básicas de sistemas lineares reais para a sua versão intervalar. Estas propriedades são causalidade, estabilidade, aditividade e homogeneidade. Finalmente, uma versão intervalar da convolução é apresentada e algumas de suas propriedades algébricas são discutidas.

References

[1] H.R. Arndt, On interval systems [x]=[a][x]+[b] and the powers of interval matrices in complex interval arithmetics, Reliable Computing, 13 (2007), 245–259.

M. Buslowicz, T. Kaczorek, Robust stability of positive discrete-time interval systems with time-delays, Bulletin of the Polish Academy of Sciences - Technical Sciences, 52, No. 2 (2004), 99–102.

Y. Candau, T. Raissi, N. Ramdani, L. Ibos, Complex interval arithmetic using polar form, Reliable Computing, 12, No. 1 (2006), 1–20.

J. Danko, M. Ondrovicov’a, V. Vesel’y, Robust controller design to control a warm air-drying chamber, Eletrical Engineering, 55, No. 7-8 (2004), 207–211.

W. Edmonson, Interval methods in digital signal processing, in “Proceeding of Validated Computing 2002”, SIAM Workshop, Toronto, Canada, 2002.

W. Edmonson, W. Alexander, G. Gloster, E. Hughes, Interval arithmetic requirements for digital signal processor, in“NSF Workshop: Presentations - Reliable Engineering Computing”, pp. 1–1, Savannah GA, 2004.

W. Edmonson, R. Gupte, S. Ocloo, J. Gianchandani, W. Alexander, Interval arithmetic logic unit for signal processing and control, in“NSFWorkshop on Reliable Engineering Computing Modeling Errors and Uncertainty in Engineering

Computations”, pp. 1–8, Georgia Tech Savannah, 2006.

R. Gupte, “Interval Arithmetic Logic Unit for DSP and Control Applications”, Master’s thesis, North Carolina State University, 2006.

E. Hansen, The hull of precoditioned interval linear equations, Reliable Computing, 6 (2000) 95–103.

R.E. Moore, “Methods and Applications of Interval Analysis”, Studies in Applied Mathematics - SIAM, Philadelfia, 1979.

A.V. Oppenheim, R.W. Schafer, “Discrete-Time Signal Processing”, Prentice Hall, 1989.

R.H.N. Santiago, B.C. Bedregal, B.M. Aci´oly, Formal aspects of correctness and optimality of interval computations, Formal Aspects of Computing, 18 (2006), 231–243.

I. Skalna, A method for outer interval solution of systems of linear equations dapending linerly on interval parameters, Reliable Computing, 12 (2006), 107–120.

Published

2009-06-01

How to Cite

Trindade, R., Bedregal, B., & Dória Neto, A. (2009). Princípios de Processamento Digital de Sinais Intervalares. Trends in Computational and Applied Mathematics, 10(1), 87–97. https://doi.org/10.5540/tema.2009.010.01.0087

Issue

Section

Original Article