Simulação Numérica de Escoamento Eletroosmótico Usando o Modelo Constitutivo de Phan-Thien-Tanner

Authors

  • W. S. Bezerra Instituto de Ciências Matemáticas e de Computação/Universidade de São Paulo https://orcid.org/0000-0002-2801-5437
  • A. Castelo Instituto de Ciências Matemáticas e de Computação/USP-São Carlos

DOI:

https://doi.org/10.5540/tema.2020.021.03.461

Keywords:

Escoamento eletroosmótico, Fluido viscoelástico, Diferenças finitas

Abstract

Neste trabalho será investigado o comportamento de escoamentos de fluidos newtonianos e não-newtonianos em microcanais. O problema não-newtoniano, consiste em resolver as equações que regem o movimento para o caso de um escoamento de fluidos cujas propriedades reológicas possam ser estudadas pelo modelo constitutivo de Phan-Thien-Tanner, como por exemplo os materiais poliméricos. Uma das características interessantes de alguns destes materiais é que eles podem ser misturados com solventes apropriados, como uma solução eletrolítica, e o resultado é que este fluido como um todo passa a ter propriedades elétricas. Assim, além das propriedades viscoelásticas, será investigada a eletrocinética do escoamento, que é diretamente influenciado pela aplicação de um campo elétrico externo. Em particular o fenômeno de eletroosmose será estudado por meio de simulações numéricas em canais planos. O movimento das cargas na solução é descrito pelas equações de Poisson-Nernst-Planck e para resolver numericamente este problema será aplicado o método das diferenças finitas generalizadas. O código para as simulações de escoamentos eletroosmóticas foi implementado como uma parte do sistema chamado HiG-Fow.

Author Biography

W. S. Bezerra, Instituto de Ciências Matemáticas e de Computação/Universidade de São Paulo

Cursando Doutorado na área de matemática computacional com ênfase em mecânica dos fluidos computacional, no Instituto de Ciências Matemáticas e de Computacão da universidade de São Paulo.

References

E. A. Doherty, R. J. Meagher, M. N. Albarghouthi, and A. E. Barron, “Microchannel wall coatings for protein separations by capillary and chip electrophoresis,” Electrophoresis, vol. 24, no. 1-2, pp. 34–54, 2003.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Chris-

tian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detec-

tion system in poly (dimethylsiloxane) for microfluidic applications,” Analytical

Chemistry, vol. 73, no. 18, pp. 4491–4498, 2001.

H. Bruus, “Theoretical microfluidics. oxford master series in condensed matter physics,” 2008.

F. F. Reuss, “Sur un nouvel effet de l’électricité galvanique,” Mem. Soc. Imp. Natur. Moscou, vol. 2, pp. 327–337, 1809.

D. Burgreen and F. Nakache, “Electrokinetic flow in ultrafine capillary slits1,” The Journal of Physical Chemistry, vol. 68, no. 5, pp. 1084–1091, 1964.

C. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capil-

lary,” The Journal of Physical Chemistry, vol. 69, no. 11, pp. 4017–4024, 1965.

H. V. Helmholtz, “Studien über electrische grenzschichten,” Annalen der Physik, vol. 243, no. 7, pp. 337–382, 1879.

M. Gouy, “Sur la constitution de la charge électrique à la surface d’un élec-

trolyte,” J. Phys. Theor. Appl., vol. 9, no. 1, pp. 457–468, 1910.

D. L. Chapman, “Li. a contribution to the theory of electrocapillarity,” The

London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, no. 148, pp. 475–481, 1913.

M. v. Smoluchowski, “Versuch einer mathematischen theorie der koagulations-kinetik kolloider lösungen,” Zeitschrift für physikalische Chemie, vol. 92, no. 1, pp. 129–168, 1918.

P. Debye and E. Hückel, “De la theorie des electrolytes. i. abaissement du point de congelation et phenomenes associes,” Physikalische Zeitschrift, vol. 24, no. 9, pp. 185–206, 1923.

C. Yang and D. Li, “Analysis of electrokinetic effects on the liquid flow in

rectangular microchannels,” Colloids and surfaces A: physicochemical and en-

gineering aspects, vol. 143, no. 2-3, pp. 339–353, 1998.

N. A. Patankar and H. H. Hu, “Numerical simulation of electroosmotic flow,” Analytical Chemistry, vol. 70, no. 9, pp. 1870–1881, 1998.

F. Bianchi, R. Ferrigno, and H. Girault, “Finite element simulation of an

electroosmotic-driven flow division at a t-junction of microscale dimensions,”

Analytical Chemistry, vol. 72, no. 9, pp. 1987–1993, 2000.

P. Dutta and A. Beskok, “Analytical solution of combined electroosmo-

tic/pressure driven flows in two-dimensional straight channels: finite debye

layer effects,” Analytical chemistry, vol. 73, no. 9, pp. 1979–1986, 2001.

J. Lin, L.-M. Fu, and R.-J. Yang, “Numerical simulation of electrokinetic focusing in microfluidic chips,” Journal of Micromechanics and Microengineering, vol. 12, no. 6, p. 955, 2002.

H. Park and W. Lee, “Helmholtz–smoluchowski velocity for viscoelastic electroosmotic flows,” Journal of colloid and interface science, vol. 317, no. 2,

pp. 631–636, 2008.

C. Zhao, E. Zholkovskij, J. H. Masliyah, and C. Yang, “Analysis of electroosmotic flow of power-law fluids in a slit microchannel,” Journal of colloid and interface science, vol. 326, no. 2, pp. 503–510, 2008.

G. Tang, X. Li, Y. He, and W. Tao, “Electroosmotic flow of non-newtonian

fluid in microchannels,” Journal of Non-Newtonian Fluid Mechanics, vol. 157,

no. 1-2, pp. 133–137, 2009.

A. Afonso, M. Alves, and F. Pinho, “Analytical solution of mixed electro-

osmotic/pressure driven flows of viscoelastic fluids in microchannels,” Journal

of Non-Newtonian Fluid Mechanics, vol. 159, no. 1-3, pp. 50–63, 2009.

R. Peng and D. Li, “Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel,” Journal of colloid and interface science, vol. 440, pp. 126–132, 2015.

L. Song, L. Yu, Y. Zhou, A. R. Antao, R. A. Prabhakaran, and X. Xuan,

“Electrokinetic instability in microchannel ferrofluid/water co-flows,” Scientific

reports, vol. 7, p. 46510, 2017.

F. S. Sousa, C. F. A. Lages, J. L. Ansoni, A. Castelo, and A. Simao, “A

finite difference method with meshless interpolation for fluid flow simulations

in hierarchical grids,” In preparation, 2018.

R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Webpage,” 2017.

R. Fattal and R. Kupferman, “Constitutive laws for the matrix-logarithm of

the conformation tensor,” Journal of Non-Newtonian Fluid Mechanics, vol. 123, no. 2, pp. 281–285, 2004.

R. Fattal and R. Kupferman, “Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation,” Journal of Non-Newtonian Fluid Mechanics, vol. 126, no. 1, pp. 23–37, 2005.

A. Afonso, F. Pinho, and M. Alves, “The kernel-conformation constitutive

laws,” Journal of Non-Newtonian Fluid Mechanics, vol. 167, pp. 30–37, 2012.

N. P. Thien and R. I. Tanner, “A new constitutive equation derived from

network theory,” Journal of Non-Newtonian Fluid Mechanics, vol. 2, no. 4,

pp. 353–365, 1977.

N. Phan-Thien, “A nonlinear network viscoelastic model,” Journal of Rheology, vol. 22, no. 3, pp. 259–283, 1978.

M. Fixman, “The poisson–boltzmann equation and its application to polyelectrolytes,” The Journal of Chemical Physics, vol. 70, no. 11, pp. 4995–5005, 1979.

M. Alves, P. Oliveira, and F. Pinho, “A convergent and universally bounded interpolation scheme for the treatment of advection,” International journal for numerical methods in fluids, vol. 41, no. 1, pp. 47–75, 2003.

A. Quarteroni, F. Saleri, and A. Veneziani, “Factorization methods for the

numerical approximation of navier–stokes equations,” Computer methods in

applied mechanics and engineering, vol. 188, no. 1-3, pp. 505–526, 2000.

F. S. Sousa, C. M. Oishi, and G. C. Buscaglia, “Spurious transients of projection methods in microflow simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 285, pp. 659–693, 2015.

S. Dhinakaran, A. Afonso, M. Alves, and F. Pinho, “Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-thien–tanner model,” Journal of colloid and interface science, vol. 344, no. 2, pp. 513–520, 2010.

Published

2020-11-27

How to Cite

Bezerra, W. S., & Castelo, A. (2020). Simulação Numérica de Escoamento Eletroosmótico Usando o Modelo Constitutivo de Phan-Thien-Tanner. Trends in Computational and Applied Mathematics, 21(3), 461. https://doi.org/10.5540/tema.2020.021.03.461

Issue

Section

Original Article