Simulação Numérica de Escoamento Eletroosmótico Usando o Modelo Constitutivo de Phan-Thien-Tanner
DOI:
https://doi.org/10.5540/tema.2020.021.03.461Keywords:
Escoamento eletroosmótico, Fluido viscoelástico, Diferenças finitasAbstract
Neste trabalho será investigado o comportamento de escoamentos de fluidos newtonianos e não-newtonianos em microcanais. O problema não-newtoniano, consiste em resolver as equações que regem o movimento para o caso de um escoamento de fluidos cujas propriedades reológicas possam ser estudadas pelo modelo constitutivo de Phan-Thien-Tanner, como por exemplo os materiais poliméricos. Uma das características interessantes de alguns destes materiais é que eles podem ser misturados com solventes apropriados, como uma solução eletrolítica, e o resultado é que este fluido como um todo passa a ter propriedades elétricas. Assim, além das propriedades viscoelásticas, será investigada a eletrocinética do escoamento, que é diretamente influenciado pela aplicação de um campo elétrico externo. Em particular o fenômeno de eletroosmose será estudado por meio de simulações numéricas em canais planos. O movimento das cargas na solução é descrito pelas equações de Poisson-Nernst-Planck e para resolver numericamente este problema será aplicado o método das diferenças finitas generalizadas. O código para as simulações de escoamentos eletroosmóticas foi implementado como uma parte do sistema chamado HiG-Fow.
References
E. A. Doherty, R. J. Meagher, M. N. Albarghouthi, and A. E. Barron, “Microchannel wall coatings for protein separations by capillary and chip electrophoresis,” Electrophoresis, vol. 24, no. 1-2, pp. 34–54, 2003.
M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Chris-
tian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detec-
tion system in poly (dimethylsiloxane) for microfluidic applications,” Analytical
Chemistry, vol. 73, no. 18, pp. 4491–4498, 2001.
H. Bruus, “Theoretical microfluidics. oxford master series in condensed matter physics,” 2008.
F. F. Reuss, “Sur un nouvel effet de l’électricité galvanique,” Mem. Soc. Imp. Natur. Moscou, vol. 2, pp. 327–337, 1809.
D. Burgreen and F. Nakache, “Electrokinetic flow in ultrafine capillary slits1,” The Journal of Physical Chemistry, vol. 68, no. 5, pp. 1084–1091, 1964.
C. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capil-
lary,” The Journal of Physical Chemistry, vol. 69, no. 11, pp. 4017–4024, 1965.
H. V. Helmholtz, “Studien über electrische grenzschichten,” Annalen der Physik, vol. 243, no. 7, pp. 337–382, 1879.
M. Gouy, “Sur la constitution de la charge électrique à la surface d’un élec-
trolyte,” J. Phys. Theor. Appl., vol. 9, no. 1, pp. 457–468, 1910.
D. L. Chapman, “Li. a contribution to the theory of electrocapillarity,” The
London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, no. 148, pp. 475–481, 1913.
M. v. Smoluchowski, “Versuch einer mathematischen theorie der koagulations-kinetik kolloider lösungen,” Zeitschrift für physikalische Chemie, vol. 92, no. 1, pp. 129–168, 1918.
P. Debye and E. Hückel, “De la theorie des electrolytes. i. abaissement du point de congelation et phenomenes associes,” Physikalische Zeitschrift, vol. 24, no. 9, pp. 185–206, 1923.
C. Yang and D. Li, “Analysis of electrokinetic effects on the liquid flow in
rectangular microchannels,” Colloids and surfaces A: physicochemical and en-
gineering aspects, vol. 143, no. 2-3, pp. 339–353, 1998.
N. A. Patankar and H. H. Hu, “Numerical simulation of electroosmotic flow,” Analytical Chemistry, vol. 70, no. 9, pp. 1870–1881, 1998.
F. Bianchi, R. Ferrigno, and H. Girault, “Finite element simulation of an
electroosmotic-driven flow division at a t-junction of microscale dimensions,”
Analytical Chemistry, vol. 72, no. 9, pp. 1987–1993, 2000.
P. Dutta and A. Beskok, “Analytical solution of combined electroosmo-
tic/pressure driven flows in two-dimensional straight channels: finite debye
layer effects,” Analytical chemistry, vol. 73, no. 9, pp. 1979–1986, 2001.
J. Lin, L.-M. Fu, and R.-J. Yang, “Numerical simulation of electrokinetic focusing in microfluidic chips,” Journal of Micromechanics and Microengineering, vol. 12, no. 6, p. 955, 2002.
H. Park and W. Lee, “Helmholtz–smoluchowski velocity for viscoelastic electroosmotic flows,” Journal of colloid and interface science, vol. 317, no. 2,
pp. 631–636, 2008.
C. Zhao, E. Zholkovskij, J. H. Masliyah, and C. Yang, “Analysis of electroosmotic flow of power-law fluids in a slit microchannel,” Journal of colloid and interface science, vol. 326, no. 2, pp. 503–510, 2008.
G. Tang, X. Li, Y. He, and W. Tao, “Electroosmotic flow of non-newtonian
fluid in microchannels,” Journal of Non-Newtonian Fluid Mechanics, vol. 157,
no. 1-2, pp. 133–137, 2009.
A. Afonso, M. Alves, and F. Pinho, “Analytical solution of mixed electro-
osmotic/pressure driven flows of viscoelastic fluids in microchannels,” Journal
of Non-Newtonian Fluid Mechanics, vol. 159, no. 1-3, pp. 50–63, 2009.
R. Peng and D. Li, “Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel,” Journal of colloid and interface science, vol. 440, pp. 126–132, 2015.
L. Song, L. Yu, Y. Zhou, A. R. Antao, R. A. Prabhakaran, and X. Xuan,
“Electrokinetic instability in microchannel ferrofluid/water co-flows,” Scientific
reports, vol. 7, p. 46510, 2017.
F. S. Sousa, C. F. A. Lages, J. L. Ansoni, A. Castelo, and A. Simao, “A
finite difference method with meshless interpolation for fluid flow simulations
in hierarchical grids,” In preparation, 2018.
R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Webpage,” 2017.
R. Fattal and R. Kupferman, “Constitutive laws for the matrix-logarithm of
the conformation tensor,” Journal of Non-Newtonian Fluid Mechanics, vol. 123, no. 2, pp. 281–285, 2004.
R. Fattal and R. Kupferman, “Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation,” Journal of Non-Newtonian Fluid Mechanics, vol. 126, no. 1, pp. 23–37, 2005.
A. Afonso, F. Pinho, and M. Alves, “The kernel-conformation constitutive
laws,” Journal of Non-Newtonian Fluid Mechanics, vol. 167, pp. 30–37, 2012.
N. P. Thien and R. I. Tanner, “A new constitutive equation derived from
network theory,” Journal of Non-Newtonian Fluid Mechanics, vol. 2, no. 4,
pp. 353–365, 1977.
N. Phan-Thien, “A nonlinear network viscoelastic model,” Journal of Rheology, vol. 22, no. 3, pp. 259–283, 1978.
M. Fixman, “The poisson–boltzmann equation and its application to polyelectrolytes,” The Journal of Chemical Physics, vol. 70, no. 11, pp. 4995–5005, 1979.
M. Alves, P. Oliveira, and F. Pinho, “A convergent and universally bounded interpolation scheme for the treatment of advection,” International journal for numerical methods in fluids, vol. 41, no. 1, pp. 47–75, 2003.
A. Quarteroni, F. Saleri, and A. Veneziani, “Factorization methods for the
numerical approximation of navier–stokes equations,” Computer methods in
applied mechanics and engineering, vol. 188, no. 1-3, pp. 505–526, 2000.
F. S. Sousa, C. M. Oishi, and G. C. Buscaglia, “Spurious transients of projection methods in microflow simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 285, pp. 659–693, 2015.
S. Dhinakaran, A. Afonso, M. Alves, and F. Pinho, “Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-thien–tanner model,” Journal of colloid and interface science, vol. 344, no. 2, pp. 513–520, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.