A Model for Aedes aegypti Infestation According to Meteorological Variables: case of Caratinga (Minas Gerais - Brazil)

F. S. Cordeiro, A. E. Eiras, F. R. Silva, J. L. Acebal


Aedes aegypti mosquitoes are the vector of diseases such as dengue, zika, chikungunya, and yellow fever among others. All the stages of development, eggs, larvae, pupa, and the adult of the species have its population modulated by meteorological variables, such as precipitation and temperature through affecting the productivity of breeding sites, metabolic processes, and others. Since adult females are responsible for transmitting the virus, the population of females becomes a direct indicator of the risk of infection. For this reason, some ongoing vector surveillance programs are based on adult female capture. In turn, all the stages of development have its population modulated by meteorological variables, such as precipitation and temperature, through productivity of breeding sites, metabolic processes and others. In this work, field data of capture of females was used to evaluate if a population dynamics model of Aedes aegypti under the effect of weather would be able to forecast field population. The nonlinear dynamic system model comprises: (1) four equations for the populations of the stages of development of the mosquito, designed for the ongoing surveillance program; (2) parametric dependencies of the rates of development on mean temperature and weekly accumulated precipitation. The dependencies on temperature and precipitation are modelled with aim of simplicity with the fewer number of parameters as possible. Temperature dependence is modelled based on values of the related literature under the assumption of existence of a optimum temperature for the rates, getting worse for extreme temperatures. The dependence on precipitation which is barely treated in experiments is modelled under the assumption of a monotonic dependence described by a power law with values estimated in orders of magnitude from data in the literature. By comparison with field data of an entomological indicator based on the number of Ae. aegypti females captured by a public health program in the city of Caratinga (Minas Gerais, Brazil), the model showed a significant correlation (R = 0.75). The result shows that the approach, if refined, can provide forecasting for of the population size.


Aedes aegypti; Meteorological Variables; Dynamical Systems

Full Text:



World Health Organization, Dengue and severe dengue. http://www.who.

int/mediacentre/factsheets/fs117/en/, 2017. acessado em 20/03/2018.

M. U. G. Kraemer, M. E. Sinka, K. A. Duda, A. Q. Mylne, F. M. Shearer,

C. M. Barker, C. G. Moore, R. G. Carvalho, G. E. Coelho, W. Van Bortel, The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus, elife, vol. 4, p. e08347, 2015.

G. Smith, D. Eliason, C. Moore, and E. Ihenacho, Use of elevated temperatures to kill Aedes albopictus and Ae. aegypti, Journal of the American Mosquito Control Association, vol. 4, no. 4, pp. 557-558, 1988.

E. B. Beserra, C. R. Fernandes, S. A. d. O. Silva, L. A. d. Silva, and J. W. d. Santos, Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (diptera, culicidae), Iheringia. Série Zoologia, vol. 99, pp. 142-148, 2009.

H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti, and

D. M. V. Wanderley, Assessing the eects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and infection, vol. 137, no. 08, pp. 1188-1202, 2009.

V. S. G. Neto and J. M. M. Rebêlo, Aspectos epidemiológicos do dengue no Município de São Luís, Maranhão, Brasil, 1997-2002, Cad. Saúde Pública, vol. 20, no. 5, pp. 1424-1431, 2004.

E. A. P. d. A. Costa, E. M. d. M. Santos, J. C. Correia, and C. M. R. d. Albuquerque, Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (diptera, culicidae), Revista Brasileira de Entomologia, vol. 54, no. 3, pp. 488-493, 2010.

R. Souza-Santos and M. S. Carvalho, Análise da distribuição espacial de larvas de Aedes aegypti na Ilha do Governador, Rio de Janeiro, Brasil, Cadernos de saúde Pública, vol. 16, no. 1, pp. 31-42, 2000.

A. d. S. Gomes, C. J. Sciavico, and Á. E. Eiras, Periodicity of oviposition of females of Aedes aegypti (linnaeus, 1762)(diptera: Culicidae) in laboratory and field, Revista da Sociedade Brasileira de Medicina Tropical, vol. 39, no. 4, pp. 327-332, 2006.

A. F. Ribeiro, G. R. A. M. Marques, J. C. Voltolini, and M. L. F. Condino, Associação entre incidência de dengue e variáveis climáticas, Rev Saúde Pública, vol. 40, no. 4, pp. 671-676, 2006.

FUNASA, Programa nacional de controle da dengue, Ministério da Saúde – Vigilância Epidemiológica, 2002.

D. P. Neves, Parasitologia humana. Atheneu, 2005.

T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark, D. Strickman, P. Kittayapong, and J. D. Edman, Longitudinal studies of aedes aegypti (diptera: Culicidae) in thailand and puerto rico: blood feeding frequency, Journal of medical entomology, vol. 37, no. 1, pp. 89-101, 2000.

World Health Organization, Neglected tropical diseases. http://www.searo.who.int/entity/vector_borne_tropical_diseases/data/data_factsheet/en/, 2018. acessado em 10/09/2018.

D. A. Focks, D. G. Haile, E. Daniels, and G. A. Mount, Dynamic life table model for Aedes aegypti (diptera: Culicidae): analysis of the literature and model development, Journal of medical entomology, vol. 30, no. 6, pp. 1003-1017, 1993.

D. J. Gubler, The global emergence/resurgence of arboviral diseases as public health problems, Archives of medical research, vol. 33, no. 4, pp. 330-342, 2002.

D. D. Chadee, F. L. Williams, and U. D. Kitron, _Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998, Tropical Medicine & International Health, vol. 10, no.8, pp. 748-754, 2005.

G. Kuno, Review of the factors modulating dengue transmission, Epidemiologic reviews, vol.17, no. 2, pp. 321-335, 1995.

M. Otero, H. G. Solari, and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate, Bulletin of mathematical biology, vol. 68, no. 8, pp. 1945-1974, 2006.

M. Burattini, M. Chen, A. Chow, F. Coutinho, K. Goh, L. Lopez, S. Ma, and E. Massad, Modelling the control strategies against dengue in Singapore, Epidemiology & Infection, vol. 136, no. 3, pp. 309-319, 2008.

A. Tran, G. L'Ambert, G. Lacour, R. Benoît, M. Demarchi, M. Cros, P. Cailly, M. Aubry-Kientz, T. Balenghien, and P. Ezanno, A rainfall-and temperaturedriven abundance model for Aedes albopictus populations, International jornal of environmental research and public health, vol. 10, no. 5, pp. 1698-1719, 2013.

A. P. M. Moreira, V. A. L. C., and S. J. C., _Tendências climáticas e anomalias de precipitação em Caratinga-MG, Os Desafios da Geografia Física na Fronteira do Conhecimento, pp. 2000-2009, 2018.

S. R. Christophers, Aedes aegypti: the yellow fever mosquito. CUP Archive, 1960.

H. M. Yang, The transovarial transmission in the dynamics of dengue infection: Epidemiological implications and thresholds, Mathematical biosciences, vol. 286, pp. 1-15, 2017.

DOI: https://doi.org/10.5540/tcam.2021.022.01.00061

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)


Indexed in:




Desenvolvido por:

Logomarca da Lepidus Tecnologia