A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field Q(z_p)
DOI:
https://doi.org/10.5540/tema.2019.020.03.561Keywords:
Lattices, cyclotomic fields, algebraic number field, rotated lattice.Abstract
The theory of lattices have shown to be useful in information theory and rotated lattices with high modulations diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends of the modulation diversity and of the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present a construction of rotated lattice for the Rayleigh fading channel in Euclidean spaces with full diversity, where this construction is through a totally real subfield K of the cyclotomic field Q(z_p), where p is an odd prime, obtained by endowing their ring of integers.References
A.A. Andrade and R. Palazzo Jr. Linear codes over finite rings. TEMA - Trends in Applied and Computational Mathematics, 6(2) (2005), 207-217.
A.S. Ansari, R. Shah, Zia Ur-Rahman, A.A. Andrade. Sequences of primitive and non-primitive BCH codes. TEMA - Trends in Applied and Computational Mathematics, 19(2) (2018), 369-389.
A. A. Andrade and J. C. Interlando. Rotated Z^n-lattices via real subfields of Q(z_{2^r}). TEMA - Thends in Applied and Computational Mathematics, to appear.
B. Erez. The Galois structure of the trace form in extensions of odd prime degree. J. Algebra, 118 (1988), 438-446.
E. Bayer-Fluckiger, F. Oggier and E. Viterbo. New algebraic constructions of rotated Z^n-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inform. Theory, 50(4) (2004), 702-714.
J. Boutros, E. Viterbo, C. Rastello, and J.C. Belfiore. Good lattice constellations for both Rayleigh fading and Gaussian channels. IEEE Trans. Inf. Theory, 42(2) (1996), 502-518.
J. P. O. Santos. Introduction to numbers theory, Projeto Euclides, Impa, Rio de Janeiro (2006).
P. Elia, B. A. Sethuraman and P. Vijay Kumar. Perfect space-time codes for any number of antennas. IEEE Trans. Inform. Theory, 53(11) (2007), 3853-3868.
P. Ribenboin. Classical theory of algebraic numbers, Springer Verlag, New York (2001).
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.