An Inverse Problem Approach for the Estimation of the Haverkamp and van Genuchten Retention Curves Parameters with the Luus-Jaakola Method
DOI:
https://doi.org/10.5540/tcam.2021.022.02.00265Keywords:
Richards equation, Inverse problem, Luus-JaakolaAbstract
In academia, the study of the movement of water in the ground has been widespread since the last century. The same can be determined using the Richards equation. This is a nonlinear parabolic partial differential equation that requires parameters to generate the results of the problem. Some authors have proposed equations that represent the relationship between volumetric moisture and soil water potential, such as Haverkamp and van Genuchten. As main objective of this work, the inverse modeling was implemented to obtain the Richards equation parameters, applying the Luus-Jaakola method. To verify the mathematical model, a sensitivity analysis was performed, which allowed the observation of the effect that each parameter has on the output data, implying a linear dependence. The results produced proved to be satisfactory for the problem analyzed in our research.Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.