On Generalized Pell Numbers of Order r ≥ 2
DOI:
https://doi.org/10.5540/tcam.2021.022.01.00125Keywords:
Generalized Pell fundamental system, Generalized Pell numbers, Combinatorial identities, Analytic representations, Generalized Cassini identityAbstract
In this paper we investigate the generalized Pell numbers of order r ≥ 2 through the properties of their related fundamental system of generalized Pell numbers. That is, the generalized Pell number of order r ≥ 2; are expressed as a linear combination of a fundamental system of generalized Pell numbers. The properties of this fundamental system are examined and results can be established for generalized Pell numbers of order r ≥ 2. Some identities and combinatorial results are established. Moreover, the analytic study of the fundamental system of generalized Pell is provided. Furthermore, the generalized Pell Cassini identity type is provided.
References
P. Catarino and P. Vasco, “On some identities and generating functions for k-pell-lucas sequence,” Appl. Math. Sci., vol. 7, no. 98, pp. 4867–4873, 2013.
A. Daşdemir, “On generalized order−k modified pell and pell–lucas numbers in terms of fibonacci and lucas numbers,” Notes on Number Theory and Discrete Mathematics, vol. 26, no. 2, pp. 205–212, 2020.
A. Shannon and A. Horadam, “Generalized pell numbers and polynomials,” Howard F.T. (eds) Applications of Fibonacci Numbers, Springer, Dordrecht, pp. 213–224, 2004.
A. Shannon and C. Wong, “Some properties of generalized third order pell numbers,” Notes on Number Theory and Discrete Mathematics, vol. 14, no. 4, pp. 16–24, 2008.
F. R. V. Alves and P. M. M. C. Catarino, “Generalized fibonacci and k-pell matrix sequences: Another way of demonstrating their properties,” Notes on Number Theory and Discrete Mathematics, vol. 25, no. 4, pp. 110–122, 2019.
R. B. Taher and M. Rachidi, “On the matrix powers and exponential by r- generalized fibonacci sequences methods: the companion matrix case,” Linear Algebra and Its Applications, vol. 370, pp. 341–353, 2003.
W. Chen and J. Louck, “The combinatorial power of the companion matrix,” Linear Algebra and its Applications, vol. 232, pp. 261–278, 1996.
G. Philippou, “On the k-th order linear recurrence and some probability appli- cations,” Applications of Fibonacci Numbers Eds G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, 1988.
R. B. Taher and M. Rachidi, “Solving some generalized vandermonde systems and inverse of their associate matrices via new approaches for the binet for- mula,” Applied Mathematics and Computation, vol. 290, pp. 267–280, 2016.
R. P. Stanley, “Enumerative combinatorics volume 1 second edition,” Cam- bridge studies in advanced mathematics, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.