Breather Stability in One Dimensional Lattices with a Symmetric Morse Potential

Authors

  • H. Cortez
  • E. Drigo Filho
  • J.R. Ruggiero

DOI:

https://doi.org/10.5540/tema.2008.09.02.0205

Abstract

Harmonic one dimensional lattice with an additional Morse potential on site has been used to describe DNA macromolecules properties. We analyze a modification of this lattice introducing a symmetric Morse potential. The existence and stability of the breather is studied in this modified system. We obtain harmonic bifurcation and determine the effective mass of the mobile breather.

References

[1] W. Saenger, ”Principles of Nucleotidic Acid Structure”, Spring Verlag, New York, 1984.

M. Peyrard, ”Statistical Mechanics of a Nonlinear model for DNA”, Physica Review Lett. ,Vol. 62, pp. 2755-2758, 1989.

J. Cuevas, ”Localizaci´on y Transferencia de Energia en Redes Anarm´onicas No Homog´eneas”, Ph. D. Thesis, Universidad de Sevilla , Sevilla, Espa˜na, 2003..

K. Forinash, ”Interaction of discrete breathers with impurity modes”, Physica Review E ,Vol. 49, pp.3400-3411, 1994.

P. Augusto, E.Drigo,J.Ruggiero, ”Statistical Model to DNA melting”, Ecl. Quim.S.P. ,Vol. 26, pp.77-85, 2001.

S. Flach, C.R. Willis, ”Discrete breathers”, Physics Reports ,Vol. 295, pp.181-264, 1998.

R.S.Mackay, S. Aubry , ”Proof of existence of breathers for time-reversible for Hamiltonian networks of weakly coupled oscillators ”, Nonlinearity Vol. 7, pp. 1623-1643, 1994.

The Student Edition of MATLAB, ”User’s guide”, Prentice Hall, Massachusetts, 2004.

F.C. Hoppensteadt, ”Analysis and Simulation of Chaotic ystems”, Spring-Verlag, New York, 2000.

G.P. Tsironis and S.Aubry , ”Slow relaxation Phenomena induced by Breathers in nonlinear lattices”, Physica Review Letters ,Vol. 77, pp. 5225-5228, 1996.

N. Theodorakopoulos, ”Thermodynamic instabilities in one-dimensional lattices: a finite-size scaling approach”, Physica Review E ,Vol. 68, pp. (026109)1-4, 2003.

Published

2008-06-01

How to Cite

Cortez, H., Drigo Filho, E., & Ruggiero, J. (2008). Breather Stability in One Dimensional Lattices with a Symmetric Morse Potential. Trends in Computational and Applied Mathematics, 9(2), 205–212. https://doi.org/10.5540/tema.2008.09.02.0205

Issue

Section

Original Article