Locating Eigenvalues of a Symmetric Matrix whose Graph is Unicyclic

Authors

  • R. O. Braga Departamento de Matemática Pura e Aplicada, IME- Instituto de Matemática e Estatística UFRGS - Universidade Federal do Rio Grande do Sul https://orcid.org/0000-0002-6156-2213
  • V. M. Rodrigues Departamento de Matemática Pura e Aplicada, IME- Instituto de Matemática e Estatística UFRGS - Universidade Federal do Rio Grande do Sul https://orcid.org/0000-0002-1964-3327
  • R. O. Silva Departamento de Matemática Pura e Aplicada, IME- Instituto de Matemática e Estatística UFRGS - Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.5540/tcam.2021.022.04.00659

Keywords:

Symmetric matrix, eigenvalue location, unicyclic graph.

Abstract

We present a linear-time algorithm that computes in a given real interval the number of eigenvalues of any symmetric matrix whose underlying graph is unicyclic. The algorithm can be applied to vertex- and/or edge-weighted or unweighted unicyclic graphs. We apply the algorithm to obtain some general results on the spectrum of a generalized sun graph for certain matrix representations which include the Laplacian, normalized Laplacian and signless Laplacian matrices.

Author Biography

R. O. Braga, Departamento de Matemática Pura e Aplicada, IME- Instituto de Matemática e Estatística UFRGS - Universidade Federal do Rio Grande do Sul

Doutor em Matemática Aplicada (UFRGS, 2015)

References

F. Belardo, M. Brunetti, and V. Trevisan. Locating eigenvalues of unbalancedunicyclic signed graphs.Appl. Math. Comput., 400:126082, 2021.

R. O. Braga, R. R. Del-Vecchio, and V. M. Rodrigues. Integral unicyclic graphs.Linear Algebra Appl., 614:281–300, 2021.

R. O. Braga and V. M. Rodrigues. Locating eigenvalues of perturbed Laplacianmatrices of trees.TEMA Tend. Mat. Apl. Comput., 18(3):479–491, 2017.

R. O. Braga, V. M. Rodrigues, and V. Trevisan. Locating eigenvalues of unicyclicgraphs.Appl. Anal. Discrete Math., 11(2):273–298, 2017.

F. R. K. Chung.Spectral Graph Theory. American Mathematical Society, 1997.

P. J. Davis.Circulant matrices. John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication, Pure and Applied Mathe-matics.

D. P. Jacobs and V. Trevisan. Locating the eigenvalues of trees.Linear AlgebraAppl., 434(1):81–88, 2011.

R. Merris. Laplacian matrices of graphs: a survey. volume 197/198, pages143–176. 1994. Second Conference of the International Linear Algebra Society(ILAS) (Lisbon, 1992)

Downloads

Published

2021-10-26

How to Cite

Braga, R. O., Rodrigues, V. M., & Silva, R. O. (2021). Locating Eigenvalues of a Symmetric Matrix whose Graph is Unicyclic. Trends in Computational and Applied Mathematics, 22(4), 659–674. https://doi.org/10.5540/tcam.2021.022.04.00659

Issue

Section

Original Article