
Diffusive Metrics Induced by Random Affinities on Graphs. An Application to the Transport Systems Related to the COVID-19 Setting for Buenos Aires (AMBA)
Abstract
Keywords
Full Text:
PDFReferences
R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, vol.21, no.1, pp.5-30, 2006.
M. F. Acosta, H. Aimar, and I. Gómez, On Frink’s type metrization of weighted graphs, Asian Research Journal of Mathematics, vol.17, pp.26-37, 2021.
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Processing Magazine, vol.34, no.4, pp.18-42, 2017.
Argentina Public COVID-19 data available in: https://covidstats.com.ar
D. Brockmann and D. Helbing, The hidden geometry of complex, networkdriven contagion phenomena, Science 342, 1337, 2013.
Y. Murano, R. Ueno, S. Shi, T. Kawashima, Y. Tanoue, S. Tanaka, S. Nomura, H. Shoji, T. Shimizu, H. Nguyen, H. Miyata, S. Gilmour and D. Yoneoka, Impact of domestic travel restrictions on transmission of COVID-19 infection using
public transportation network approach, Sci Rep 11, 3109, 2021.
DOI: https://doi.org/10.5540/tcam.2022.023.04.00783
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Trends in Computational and Applied Mathematics
A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
Indexed in: