Mecanismos de Criação de Atratores Estranhos no Segundo Sistema de Rössler

Authors

  • M. Messias
  • C. Nespoli
  • T.M. Dalbelo

DOI:

https://doi.org/10.5540/tema.2008.09.02.0275

Abstract

Neste trabalho fazemos uma análise das bifurcações locais que ocorrem nos pontos de equilíbrio do Segundo Sistema de Rössler, que é um sistema quadrático tridimensional de equações diferenciais ordinárias, dependendo de três parâmetros reais, a, b e c. Determinamos as superfícies no espaço de parâmetros, para as quais o sistema apresenta bifurcações de Hopf. Mostramos numericamente que para valores dos parâmetros próximos aos de bifurcação de Hopf o sistema possui atratores estranhos. Além disso, para a = 0 o sistema possui uma família formada por infinitos ciclos heteroclínicos singularmente degenerados, que consistem de conjuntos invariantes formados por uma linha de equilíbrios, juntamente com uma órbita heteroclínica conectando dois destes equilíbrios. Mostramos numericamente que pequenas perturbações do sistema, tomando-se a > 0 pequeno,levam à quebra destes ciclos degenerados e à criação de atratores estranhos.

References

[1] Jiin-Po Yeh, Kun-Lin Wu, A simple method to synchronize chaotic systems and its application to secure communications, Mathematical and Computer Modelling 47 (2008), 894-902.

H. Kokubu, R. Roussarie, Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: Part I, J. Dyn. Diff. Equat. 16 (2004), 513-557.

Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Second Edition, Springer-Verlag, New York, 2004.

J. Llibre, M. Messias, P.R. da Silva, On the global dynamics of the Rabinovich system, J. Phys. A: Math. Theor. 41 (2008), 275210-31.

E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.

L.F. Mello, M. Messias, D.C. Braga, Bifurcation analysis of a new Lorenz-like chaotic system, Chaos, Solitons and Fractals 37 (2008), 1244-1255.

M. Messias, “Dynamic at Infinity and Existence of Singularly Degenerate Heteroclinic Cycles in the Lorenz System”, Relat´orio T´ecnico - DMEC-FCTUNESP 01 (2008), 1-25.

K. Murali, M. Lakshmanan, Secure communication using a compound signal from generalized synchronizable chaotic systems, Physics Letters A 241, No. 6 (1998), 303-310.

L.S. Pontryagin, “Ordinary Differential Equations”, Addison-Wesley Publishing Company Inc., Reading, 1962.

O.E. R¨ossler, An equation for continuous chaos, Physics Letters, 57A, No. 5 (1976), 397-398.

O.E. R¨ossler, Continuous chaos – four prototype equations, em “Bifurcation Theory and Applications in Scientific Disciplines”, Ann. New York Acad. Sci., 316 (1979), 376-392.

C. Sparrow, “The Lorenz equations: bifurcations, chaos and strange attractors”, Springer–Verlag, New York, 1982.

S.H. Strogatz, “Nonlinear Dynamics and Chaos: with applications in Physics, Biology, Chemistry and Engineering”, Addison Wesley Publishing Company Inc., Cambridge, USA, 1994.

M. Viana, What’s new on Lorenz strange attractors?, Math. Intelligencer, 22, No. 3 (2000), 6-19.

Published

2008-06-01

How to Cite

Messias, M., Nespoli, C., & Dalbelo, T. (2008). Mecanismos de Criação de Atratores Estranhos no Segundo Sistema de Rössler. Trends in Computational and Applied Mathematics, 9(2), 275–285. https://doi.org/10.5540/tema.2008.09.02.0275

Issue

Section

Original Article