A New Expression for the Coulomb Potential Corresponding to the Product of Two Exponential Functions Based on the Properties of the Integral Representations of the Bessel Functions
DOI:
https://doi.org/10.5540/tcam.2022.024.01.00001Keywords:
Bessel functions, non-rational functions, integral representation, improper integrals, oscillating integrand, Exponential Type Functions, Coulomb PotentialAbstract
The calculation of the Coulomb Potential corresponding to the product of two Exponential Type Functions, inherently has numerical challenges that must be resolved. In order to address these problems, in this paper it is presented a new partition of the Coulomb Potential. The proposed partition involves two terms. One of the terms is a one-dimensional integral, which allows geometrical and statistical interpretations. The other term is proportional to a Modified Bessel Function and it is obtained from a two-step procedure. As a first step, a Non-Rational Function is used for approximating one of the two integrals involved. Then, the remaining improper integral can be identified with an integral representation of an appropriate Modified Bessel Function. The existence of such a Non-Rational Approximant is proved and its numerical performance is shown through some examples.
References
J. E. Pérez, O. E. Taurian, A. Bouferguene, and P. E. Hoggan, “On a transformation for the electrostatic potential, generated by the product of two 1s Slater type orbitals, giving an efficient expression,” Advances in Quantum Chemistry, vol. 67, pp. 65–71, 2013.
C. J. Alturria. Lanzardo, J. Pérez, M. L. Tardivo, G. Fraschetti, and J. C. Cesco, “Potencial de coulomb para funciones 1s de Slater expresado en términos de funciones de Bessel,” in Matemática Aplicada Computacional e Industrial, vol. 8, pp. 81–84, ASAMACI, 2021.
I. Stegun and M. Abramowitz, Handbook of mathematical functions and tables, Bessel function of fractional order. National Bureau of Standards, App Math. Series, Dover, 1972.
J. C. Cesco, J. E. Pérez, C. C. Denner, G. O. Giubergia, and A. E. Rosso,
“Rational Approximants to Evaluate four-center Electron Repulsion ntegrals for 1s Hydrogen Slater Type Functions,” Applied Numerical Mathematics, vol. 55, pp. 179–190, 2005.
C. J. Alturria Lanzardo, J. Pérez, and J. Cesco, “Aproximación de integrales impropias cuyo integrando tiene una parte oscilante,” in Matemática Aplicada Computacional e Industrial, vol. 7, pp. 181–184, ASAMACI, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
Authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and the citation of the published work (See The effect of open access).
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the
author. This is in accordance with the BOAI definition of open access
Intellectual Property
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License under attribution BY.