Assessment of Covariance Selection Methods in High-Dimensional Gaussian Graphical Models
DOI:
https://doi.org/10.5540/tcam.2022.023.03.00583Keywords:
Covariance selection, Gaussian graphical model, GlassoAbstract
The covariance selection in Gaussian graphical models consists in selecting, based on a sample of a multivariate normal vector, all those pairs of variables that are conditionally dependent given the remaining variables. This problem is equivalent to estimate the graph identifying the nonzero elements on the off-diagonal entries of the precision matrix. There are different proposals to carry out covariance selection in high-dimensional Gaussian graphical models, such as neighborhood selection and Glasso, among others. In this paper we introduce a methodology for evaluating the performance of graph estimators, defining the notion of non-informative estimator. Through a simulation study, the empirical behavior of Glasso in different structures of the precision matrix is investigated and its performance is analyzed according to different degrees of density of the graph. Our proposal can be used for other covariance selection methods.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.