Laplace’s and Poisson’s Equations in a Semi-Disc under the Dirichlet-Neumann Mixed Boundary Condition

Authors

DOI:

https://doi.org/10.5540/tcam.2023.024.02.00191

Keywords:

Laplace, Poisson, semi-disk, Dirichlet, Neumann, Green's, images.

Abstract

In this work, the solution of Poisson's equation in a semi-disc under a Dirichlet boundary condition at the base and a Neumann boundary condition on the circumference is calculated. The solution is determined in terms of Green's function, which is calculated in two ways, by the method of images and by solving its equation. In the particular case of Laplace's equation, it is presented a second way to solve it, which uses separation of variables and a Fourier transform.

Author Biography

R. T. Couto, Universidade Federal Fluminense Instituto de Matemática e Estatística

Universidade Federal Fluminense

Instituto de Matemática e Estatística

Departamento de Matemática Aplicada

Professor Associado 4

References

D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Prob lems. Belmont, CA: Brooks/Cole, 7 ed., 2009.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Amsterdan: Academic Press (Elsevier), 2007.

J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, 3 ed., 1999.

D. G. Duffy, Green’s Functions with Applications. Boca Raton: Chapman & Hall/CRC, 2001.

A. N. Tijonov and A. A. Samarsky, Ecuaciones de la Fisica Matematica. Moscow: Editorial Mir (translated from Russian to Spanish), 2 ed., 1980.

E. C. Zachmanoglou and D. W. Thoe, Introduction to Partial Differential Equa tions with Applications. New York: Dover Publications, 1986.

I. Rubinstein and L. Rubinstein, Partial Differential Equations. Cambridge University Press, 1998.

G. Barton, Elements of Green’s Functions and Propagation: Potentials, Diffu sion, and Waves. Oxford University Press, 1989.

E. Butkov, Mathematical Physics. Reading, MA: Addison-Wesley, 1973.

J. Franklin, Classical Electromagnetism. Mineola, NY: John Wiley & Sons, 2 ed., 2017.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists. San Diego: Academic Press, 5 ed., 2001.

R. Reynolds and A. Stauffer, “A method for evaluating definite integrals in terms of special functions with examples,” International Mathematical Forum, vol. 15, no. 5, pp. 235–244, 2020.

Downloads

Published

2023-05-24

How to Cite

Couto, R. T. (2023). Laplace’s and Poisson’s Equations in a Semi-Disc under the Dirichlet-Neumann Mixed Boundary Condition. Trends in Computational and Applied Mathematics, 24(2), 191–210. https://doi.org/10.5540/tcam.2023.024.02.00191

Issue

Section

Original Article