Stochastic Modeling of a Measles Outbreak in Brazil

M. Lau, Z. G. Arenas


Development of mathematical models and its numerical implementations are essential tools in epidemiological modeling. Susceptible-Infected-Recovered (SIR) compartmental model, proposed by Kermack and McKendrick, in 1927, is a widely used deterministic model which serves as a basis for more involved mathematical models. In this work, we consider two stochastic versions of the SIR model for analysing a measles outbreak in Ilha Grande, Rio de Janeiro, in 1976; Continuous Time Markov Chain and Stochastic Differential Equations.  The SIR Continuous Time Markov Chain model is used to extract specific information from the measles outbreak, obtaining results in excellent agreement with the reported epidemic values. Numerical simulations are performed in Python.


Stochastic epidemiological models; SIR model; Measles outbreak

Full Text:



A. Düx, S. Lequime, L. V. Patrono, B. Vrancken, S. Boral, J. F. Goga-

rten, A. Hilbig, D. Horst, K. Merkel, B. Prepoint, S. Santibanez, J. Schlot-

terbeck, M. A. Suchard, M. Ulrich, N. Widulin, A. Mankertz, F. H. Leen-

dertz, K. Harper, T. Schnalke, P. Lemey, and S. Calvignac-Spencer, “Measles virus and rinderpest virus divergence dated to the sixth century bce,” Science, vol. 368, no. 6497, pp. 1367–1370, 2020.

E. A. S. Medeiros, “Entendendo o ressurgimento e o controle do sarampo no Brasil, volume = 33, year = 2020,” Acta Paulista de Enfermagem [online], no. e-EDT20200001.

F. Brauer, “Compartmental models in epidemiology,” in Mathematical Epidemiology, pp. 19–79, Springer, 2008.

L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology. Texas, USA: Chapman and Hall/CRC, 2010.

L. J. S. Allen, “An introduction to stochastic epidemic models,” in Mathematical Epidemiology, pp. 81–130, Springer, 2008.

W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” The Royal Society, pp. 700–721, 1927. Vol. 115, No. 772.

N. A. Araújo Filho and J. R. Coura, “Surto epidêmico de sarampo na Ilha

Grande, Rio de Janeiro, Brasil,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 13, no. 1, pp. 147–155, 1980.

P. Whittle, “The outcome of a stochastic epidemic – A note on Bailey’s paper,” Biometrika, vol. 42, no. 1/2, pp. 116–122, 1955.

F. G. Foster, “A note on Bailey’s and Whittle’s treatment of a general stochastic epidemic,” Biometrika, vol. 33, pp. 123–125, 1955.

E. Szusz, L. Garrison, and C. Bauch, “A review of data needed to parameterize a dynamic model of measles in developing countries,” BMC Research Notes, vol. 3, no. 75, 2010


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)


Indexed in:




Desenvolvido por:

Logomarca da Lepidus Tecnologia