Eficiência dos Métodos Multigrid Algébricos para a Solução da Equação do Fluxo Livre Estacionário em Domínio Georreferenciado
DOI:
https://doi.org/10.5540/tcam.2022.023.04.00639Keywords:
Elementos Finitos, FEniCs, Python.Abstract
Neste artigo o método multigrid algébrico baseado em agregação suavizada, o método clássico de Ruge-Stüben e o método GMRES pré-condicionado por multigrid algébrico foram utilizados para a solução da equação do fluxo livre estacionário em domínio georreferenciado. A disponibilidade dos códigos computacionais permitiu avaliar a aproximação de elementos finitos sob a perspectiva dos métodos multigrid algébricos e respectiva combinação, como pré-condicionante, com o método GMRES. As diferenças máximas entre soluções por diferentes métodos, o tempo necessário para obter as soluções dos sistemas lineares associados em cada uma das iterações de Picard, os residuais de cada um dos métodos iterativos e os resíduos em cada uma das iteradas de Picard são apresentados e discutidos. Como resultado da análise, os método pré-condicionados são mais eficientes no sentido do menor tempo computacional aliado à estabilidade do número de iterações. A análise dos resíduos das iterações de Picard permite comparar a evolução dos diferentes métodos de solução dos sistemas lineares. O detalhamento dos residuais dos métodos iterativos em cada passo das iterações de Picard permitiu uma visão mais abrangente e uma análise da convergência. Em detalhes, o método baseado em agregação suavizada necessita de um número expressivamente menor de iterações quando comparado ao método clássico de Ruge Stüben nas primeiras iterações de Picard. O pré-condicionamento reduz o número de iterações em relação às iterações iniciais e há uma persistência da redução do número de iterações do método baseado em agregação em relação ao método clássico.
References
J. Bear, Hydraulics of Groundwater. New York: McGraw Hill, 2012.
J. Done and A. Huerta, Finite Element Methods for Flow Problems. JohnWiley & Sons, 2004.
M. Gockenbach, Understanding and Implementing the Finite Element Method. SIAM, 2006.
R. Verfürth, “Adaptive finite element methods lecture notes winter term,” 2008.
R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst,Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Other Titlesin Applied Mathematics, Society for Industrial and Applied Mathematics, 2 ed.,1994.
K. S. ben, “A review of algebraic multigrid,”Journal of Computational andApplied Mathematics, 2001.
W. L. Briggs, V. E. Hemson, and S. F. McCormick, A Multigrid Tutorial.Philadelphia: Society for Industrial and Applied Mathematics, 1987.
P. Vaneek, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems,” vol. 56, pp. 179–196, 1995.
M. Brezina, T. Manteuffel, S. MCormick, J. Ruge, and G. Sanders, “Towards adaptive smoothed aggregation (αsa) for nonsymmetric problems,” 2010.
A. Firmiano, J. P. M. Santos, and E. Wendland, “Geocomputação aplicada no problema de transporte acoplado ao fluxo subterrâneo em aquífero livre,”Águas Subterrâneas, vol. 34, pp. 30–38, 2020.
A. Firmiano, J. P. M. Santos, and E. Wendland, “Geoprocessamento de bacia hidrográfica e a solução automatizada do fluxo em aquífero freático,” in Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol. 6, 2018.
A. Firmiano, J. P. M. Santos, E. Wendland, and J. Roehrig, “Geoprocessamento para a solução fraca do transporte de contaminantes acoplado ao fluxo de Água subterrânea,” in Trends in Applied Mathematics - TEMA, vol. 18, (São Carlos), pp. 273–286, 2017.
A. Logg, K. Mardal, and G. Wells, FEniCS Project: Lecture Notes in Computational Science and Engineering. New York: Springer, 2010.
J. P. M. Santos, A. Firmiano, and E. Wendland, “Transporte de contaminantes em aquífero freático,” in Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol. 6, 2018.
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. F. E. W., Moore, J. VanderPlas,D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. .Contributors, “Scipy 1.0: Fundamental algorithms for scientific computing in python, ”Nature Methods, vol. 17, pp. 261–272, 2020
L. N. L. N. Olson and J. B. J. B. Schroder, “Pyamg: Algebraic multigrid solvers in python, v4.0,” 2018. Release 4.0.
J. Hunter, “Matplotlib: A 2d graphics environment, ”Computing In Science & Engineering, vol. 9, pp. 90–95, 2007.
S. van der Walt, S. Colbert, and G. Varoquaux, “The numpy array: A structure for efficient numerical computation, ”Computing in Science Engineering, vol. 13, pp. 22–30, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
Authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and the citation of the published work (See The effect of open access).
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the
author. This is in accordance with the BOAI definition of open access
Intellectual Property
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License under attribution BY.