### On the Preconditioned Delayed Weighted Gradient Method

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

E. Birgin, I. Chambouleyron, and J. M. Martínez, Estimation of the optical constants and the thickness of thin films using unconstrained optimization, Computational Physics, no. 151, pp. 862-880, 1999.

T. Serani, G. Zanghirati, and L. Zanni, Gradient projection methods for large quadratic programs and applications in training support vector machines, Optimization Methods and Software, no. 20, pp. 353-378, 2005.

M. A. Figueiredo, R. Nowak, and S. Wright, Projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process, no. 1, pp. 586-597, 2007.

A. Cauchy, Méthode générale pour la résolution des systemes d'équations simultanées, Comptes Rendus Sci. Paris, vol. 25, pp. 536-538, 1847.

H. Akaike, On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method, Annals of the Institute of Statistical Mathematics, vol. 11, pp. 1-16, 1959.

R. D. Asmundis, D. di Serafino, W. W. Hager, G. Toraldo, and H. Zhang,

An eficient gradient method using the Yuan steplength, Computational Optimization and Applications, vol. 59, pp. 541-563, 2014.

J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, vol. 8, no. 1, pp. 141-148, 1988.

D. di Serano, V. Ruggiero, G. Toraldo, and L. Zanni, On the steplength selection in gradient methods for unconstrained optimization, Applied Mathematics and Computation, vol. 318, pp. 176-195, 2018.

Y.-H. Dai and L.-Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, vol. 22, no. 1, pp. 1-10, 2002.

A. Friedlander, J. M. Martínez, B. Molina, and M. Raydan, Gradient method with retards and generalizations, SIAM Journal on Numerical Analysis, vol. 36, no. 1, pp. 275-289, 1999.

Y. X. Yuan, A new stepsize for the steepest decent method, Journal of Computational Mathematics, vol. 24, no. 2, pp. 149-156, 2006.

Y.-H. Dai, Y. Huang, and X.-W. Liu, A family of spectral gradient methods for optimization, Computational Optimization and Applications, vol. 74, pp. 43-65, 2019.

H. F. Oviedo-Leon, A delayed weighted gradient method for strictly convex quadratic minimization, Computational Optimization and Applications, vol. 74, pp. 729-746, 2019.

R. Andreani and M. Raydan, Properties of the delayed weighted gradient method, Computational Optimization and Applications, vol. 78, pp. 167-180, 2021.

G. E. Forsythe and T. S. Motzkin, Asymptotic properties of the optimum gradient method, preliminary report, Bull. Amer. Math. Soc, vol. 57, pp. 304-305, 1951.

B. V. Shah, R. J. Buehler, and O. Kempthorne, Some algorithms for minimizing a function of several variables, Journal of the Society for Industrial and Applied Mathematics, vol. 12, no. 1, pp. 74-92, 1964.

H. Sorenson, Comparison of some conjugate direction procedures for function minimization, Journal of the Franklin Institute, vol. 288, no. 6, pp. 421-441, 1969.

J.-L. Lamotte, B. Molina, and M. Raydan, Smooth and adaptive gradient method with retards, Mathematical and Computer Modelling, vol. 36, pp. 1161-1168, December 2002.

D. Bertaccini and F. Durastante, Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications. New York: Chapman and Hall/CRC, 2018.

E. G. Birgin, J. M. Martínez, and M. Raydan, Spectral projected gradient methods: review and perspectives, Journal of Statistical Software, vol. 60, no. 3, pp. 1-21, 2014.

R. D. Asmundis, D. di Serafino, F. Riccio, and G. Toraldo, On spectral properties of steepest descent methods, IMA Journal of Numerical Analysis, vol. 33, no. 4, pp. 1416-1435, 2013.

Y. Huang, Y.-H. Dai, X.-W. Liu, and H. Zhang, Gradient methods exploiting spectral properties, Optimization Methods and Software, vol. 35, no. 4, pp. 681-705, 2020.

G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, 4th ed., 2012.

D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, second ed., 2011.

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, 1995.[26] W. Ford, Numerical Linear Algebra with Applications: Using MATLAB. New York: Elsevier Inc, 2015.

W. Ford, Numerical Linear Algebra with Applications: Using MATLAB. New York: Elsevier Inc, 2015.

DOI: https://doi.org/10.5540/tcam.2023.024.03.00437

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**Trends in Computational and Applied Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

Indexed in: