A Clustering Based Method to Stipulate the Number of Hidden Neurons of mlp Neural Networks: Applications in Pattern Recognition
DOI:
https://doi.org/10.5540/tema.2008.09.02.0351Abstract
In this paper, we propose an algorithm to obtain the number of necessary hidden neurons of single-hidden-layer feed forward networks (SLFNs) for different pattern recognition application tasks. Our approach is based on clustering analysis of the data in each class. We show by simulations that the proposed approach requires less computation CPU time and error rates as well as a smaller number of neurons than other methods.References
[1] A. Asuncion, D.J. Newman, “UCI Machine Learning Repository”, Irvine, CA: University of California, School of Information and Computer Science, 2007. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
W. Duch, R. Adamczak, N. Jankowski, Initialization and optimization of multilayered perceptrons, in “Proceedings of the 3th Conference on Neural Networks and Their Applications”, pp. 105-110, 1997.
G.B. Huang, H.A. Babri, Upper bounds on the number of hidden neuron in feedforward networks with arbitrary bounded nonlinear activation functions, IEEE Transactions on Neural Networks, 9, No. 1 (1998), 224-229.
R.A. Johnson, D.W. Wichern, “Applied Multivariate Statistical Analysis”, 5th ed., Prentice Hall, Upper Saddle River, 2002.
R.P. Lippmann, Pattern classification using neural networks, IEEE Communications Magazine, (1989), 47-64.
S.A. Mingoti, “An´alise de Dados atrav´es de Metodos de Estat´ıstica Multivariada: uma Abordagem Aplicada”, UFMG, Belo Horizonte, 2005.
H.C. Romesburg, “Cluster Analysis for Researchers”, Robert E. Krieger, Malabar, 1990.
M.R. Silvestre, L.L. Ling, Optimization of neural classifiers based on Bayesian decision boundaries and idle neurons pruning, in “Proceedings of the 16th International Conference on Pattern Recognition”, pp. 387-390, 2002.
N. Weymaere, J.P. Martens, On the initialization and optimization of multilayer perceptrons, IEEE Transactions on Neural Networks, 5, No. 5, (1994), 738-751.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.