### Stagnation Points Beneath Rotational Solitary Waves in Gravity-Capillary Flows

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Stokes GG. On the theory of oscillatory waves. Trans Cambridge Phil Soc. 1847; 8:441-455.

Ursell F. Mass transport in gravity waves. Proc Cambridge Phil Soc. 1953; 40:145-150.

Constantin A, Villari G Particle trajectories in linear water waves. J Math Fluid Mech. 2008; 10:1336-1344.

Constantin A, Strauss W Pressure beneath a Stokes wave. Comm Pure Appl Math. 2010; 63:533-557.

Nachbin A, Ribeiro-Jr R A boundary integral method formulation for particle trajectories in Stokes Waves. DCDS-A. 2014; 34(8):3135-3153.

Borluk H, Kalisch H Particle dynamics in the kdv approximation. Wave Mo- tion. 2012; 49:691-709.

Alfatih A, Kalisch H Reconstruction of the pressure in long-wave models with constant vorticity. Eur J Mech B-Fluid. 2013; 37:187-194.

Gagnon L Qualitative description of the particle trajectories for n-solitons so- lution of the korteweg-de vries equation. Discrete Contin Dyn Syst. 2017; 37:1489-1507.

Guan, X Particle trajectories under interactions between solitary waves and a linear shear current. Theor App Mech Lett. 2020;10:125-131.

Khorsand, Z Particle trajectories in the Serre equations. Appl Math Comput. 2020;230:35-42.

Curtis C, Carter J, Kalisch H Particle paths in nonlinear schrödinger models in the presence of linear shear currents. J. Fluid Mech. 2018;855:322-350.

Carter J, Curtis C, Kalisch H Particle trajectories in nonlinear Schrödinger models. Water Waves. 2020;2:31-57.

Teles Da Silva AF, Peregrine DH Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 1988;195:281-302.

Ribeiro-Jr R, Milewski PA, Nachbin A Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 2017;812:792-814.

Flamarion MV, Nachbin A, Ribeiro-Jr R Time-dependent Kelvin cat-eye struc- ture due to current-topography interaction. J. Fluid Mech. 2020;889:A11.

Johnson RS On the nonlinear critical layer below a nonlinear unsteady surface wave. J. Fluid Mech. 1986;167:327-351.

Martin CI Equatorial wind waves with capillary effects and stagnation points. Nonlinear Anal-Theor. 2014;96:1-8.

Hur V, Wheeler M Exact free surfaces in constant vorticity flows. J. Fluid Mech. 2020;896:R1.

Shoji M, Okamoto H Stationary water waves on rotational flows of two vortical layers. Jpn J Ind Appl Math. 2021;38:79-103.

G. B. Whitham (1974) Linear and Nonlinear Waves, Wiley.

DOI: https://doi.org/10.5540/tcam.2023.024.02.00265

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**Trends in Computational and Applied Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

Indexed in: