A Multiobjective Optimization Application to Control the Aedes Aegypti Mosquito using a Two-Dimensional Diffusion-Reaction Model

J. S. Lima, A. S. V. Vasconcelos, R. T. N. Cardoso


Aedes aegypti is the main vector of multiple diseases, such as dengue, yellow fever, Zika, and chikungunya. Diseases associated with mosquitoes have been growing in recent years, with more than one-third of the world population at risk. Control techniques have been studied to prevent the spread of the Aedes aegypti, such that new formula and how to use adulticides and larvicides, among others. This paper proposes a novel approach in the field of partial differential equations and optimization. We consider a two-dimensional diffusion-reaction model that describes the interaction between aquatic and adult female stages spreading across a domain with parameters dependent on rainfall and temperature. We also formulate a mono-objective and multiobjective optimization problem to minimize the Aedes aegypti populations and the control, considering the application of adulticides and larvicides, using actual data from the city of Lavras/Brazil. The operator splitting technique is used to solve the diffusion-reaction system, coupling finite difference and the fourth-order Runge-Kutta method and optimal solutions were searched by using the Real-Biased Genetic Algorithm and Non-dominated Sorting Genetic Algorithm -II. Numerical results show significant reduction of the Aedes aegypti population.


Aedes aegypti, Partial differential equations, Optimization

Full Text:



J. R. Powell, A. G. Soria, and P. Kotsakiozi, “Recent History of Aedes aegypti : Vector Genomics and Epidemiology Records,” Bioscience, vol. 68, no. 11, pp. 854–860, 2018.

H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Vaccination models and optimal control strategies to dengue,” Mathematical biosciences, vol. 247, pp. 1–12, 2014.

M. Z. Ndii, D. Allingham, R. Hickson, and K. Glass, “The effect of wolbachia on dengue outbreaks when dengue is repeatedly introduced,” Theoretical Population Biology, vol. 111, pp. 9–15, 2016.

W. O. Dias, E. F. Wanner, and R. T. N. Cardoso, “A multiobjective opti-

mization approach for combating Aedes aegypti using chemical and biological alternated step-size control,” Mathematical biosciences, vol. 269, pp. 37–47, 2015.

H. O. Florentino, D. R. Cantane, F. L. Santos, and B. F. Bannwart, “Multiobjective genetic algorithm applied to dengue control,” Mathematical biosciences, vol. 258, pp. 77–84, 2014.

J. Murray, Mathematical biology: I. An introduction. New York: Springer,

K. Hattaf and N. Yousfi, “Global stability for reaction–diffusion equations in biology,” Computers & Mathematics with Applications, vol. 66, no. 8, pp. 1488–1497, 2013.

D. Zhu, J. Ren, and H. Zhu, “Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model,” Mathematical Methods in the Applied Sciences, vol. 41, no. 14, pp. 5388–5403, 2018.

W. M. S. Yamashita, S. S. Das, and G. Chapiro, “Numerical modeling of

mosquito population dynamics of Aedes aegypti,” Parasites & vectors, vol. 11, no. 1, p. 245, 2018.

L. T. Takahashi, N. A. Maidana, W. C. Ferreira, P. Pulino, and H. M. Yang, “Mathematical models for the aedes aegypti dispersal dynamics: travelling waves by wing and wind,” Bulletin of mathematical Biology, vol. 67, no. 3, pp. 509–528, 2005.

S. A. Carvalho, S. O. da Silva, and I. d. C. Charret, “Mathematical modeling of dengue epidemic: control methods and vaccination strategies,” Theory in Biosciences, vol. 138, no. 2, pp. 223–239, 2019.

L. Multerer, T. Smith, and N. Chitnis, “Modeling the impact of sterile males on an aedes aegypti population with optimal control,” Mathematical biosciences, vol. 311, pp. 91–102, 2019.

S. Bailey, D. Eliason, and B. Hoffmann, “Flight and dispersal of the Mosquito Culex tarsalis Coquillett in the Sacramento Valley of California,” Hilgardia, vol. 37, no. 3, pp. 73–113, 1965.

R. M. D. Freitas, C. T. Codeco, and R. L. D. Oliveira, “Daily Survival Rates and Dispersal of Aedes aegypti Females in Rio de Janeiro, Brazil,” The American journal of tropical medicine and hygiene, vol. 76, no. 4, pp. 659–665, 2007.

C. P. Ferreira, P. Pulino, H. M. Yang, and L. T. Takahashi, “Controlling Dispersal Dynamics of Aedes aegypti,” Mathematical Population Studies, vol. 13, no. 4, pp. 215–236, 2006.

D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of parabolic and elliptic differential equations,” Journal of the Society for industrial and Applied Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

J. Geiser, Decomposition Methods for Differential Equations: Theory and Applications. New York: CRC Press, 2009.

A. P. Wyse, A. J. B. Santos, J. S. Azevedo, J. S. Lima, and J. R. Faria, “Modeling the spreading and interaction between wild and transgenic mosquitoes with a random dispersal,” PloS one, vol. 13, no. 10, p. e0205879, 2018.

J. Lima, A. Wyse, A. Santos, and R. Cardoso, “Reaction-diffusion model applied to the population dynamics of wild and transgenic mosquitoes,” TEMA (São Carlos), vol. 21, no. 3, pp. 505–519, 2020.

J. Wong, S. T. Stoddard, H. Astete, A. C. Morrison, and T. W. Scott, “Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control,” PLoS Negl Trop Dis, vol. 5, no. 4, p. e1015, 2011.

F. E. Moustaid and L. R. Johnson, “Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti,” Insects, vol. 10, no. 11, p. 393, 2019.

H. M. Yang and C. P. Ferreira, “Assessing the effects of vector control on dengue transmission,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 401–413, 2008.

E. Pliego-Pliego, O. Vasilieva, J. Velázquez-Castro, and A. F. Collar, “Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks,” Applied Mathematical Modelling, vol. 50, pp. 484 – 496, 2017.

F. Cordeiro, Á. Eiras, F. Silva, and J. Acebal, “A model for Aedes aegypti infestation according to meteorological variables: case of Caratinga (Minas Gerais-Brazil),” Trends in Computational and Applied Mathematics, vol. 22, pp. 61–78, 2021.

A. S. Vasconcelos, J. S. Lima, R. T. Cardoso, J. L. Acebal, and A. M. Loaiza, “Optimal control of aedes aegypti using rainfall and temperature data,” Computational and Applied Mathematics, vol. 41, no. 3, pp. 1–24, 2022.

S. Polwiang, “The seasonal reproduction number of dengue fever: impacts of climate on transmission,” PeerJ, vol. 3, p. e1069, 2015.

L. S. B. Silva, A. S. V. Vasconcelos, A. L. Sanches, R. T. N. Cardoso,

J. L. A. Fernandes, and Á. E. Eiras, “Otimização mono-objetivo no controle

do mosquito Aedes aegypti por meio de um modelo de duas populações com influência da precipitação,” TEMA (São Carlos), vol. 20, no. 1, pp. 197–216, 2019.

H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley, “Assessing the effects of temperature on dengue transmission,” Epidemiology & Infection, vol. 137, no. 8, pp. 1179–1187, 2009.

A. Iserles, A First Course in the Numerical Analysis of Differential Equations. United Kingdom: Cambridge University Press, 2009.

A. S. Vasconcelos, L. S. Silva, R. T. Cardoso, and J. L. Acebal, “Optimization of a rainfall dependent model for the seasonal aedes aegypti integrated control: a case of lavras/brazil,” Applied Mathematical Modelling, vol. 90, pp. 413–431, 2021.

D. E. Goldenberg, Genetic algorithms in search, optimization and machine learning. United States: Addison-Wesley Publishing, 1989.

J. A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on magnetics, vol. 37, no. 5, pp. 3414–3417, 2001.

R. H. C. Takahashi, J. A. Vasconcelos, J. A. Ramírez, and L. Krahenbuhl, “A multiobjective methodology for evaluating genetic operators,” IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1321–1324, 2003.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

J. H. Arias, H. J. Martinez, L. S. Sepúlveda-Salcedo, and O. Vasilieva,

“Predator-prey model for analysis of Aedes aegypti population dynamics in Cali, Colombia,” International Journal of Pure and Applied Mathematics, vol. 4, no. 105, pp. 561–597, 2015.

H. M. Yang, “Assessing the Influence of Quiescence Eggs on the Dynamics of Mosquito Aedes aegypti,” Applied Mathematics, vol. 5, no. 17, p. 2696, 2014.

H. M. Yang, J. L. Boldrini, A. C. Fassoni, L. F. S. Freitas, M. C. Gomez,

K. K. B. de Lima, V. R. Andrade, and A. R. R. Freitas, “Fitting the Incidence

Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-Dependent Entomological Parameters,” PloS One, vol. 11, no. 3, p. e0152186, 2016.

H. M. Yang, “The transovarial transmission in the dynamics of dengue infection: Epidemiological implications and thresholds,” Mathematical biosciences, vol. 286, pp. 1–15, 2017.

R. Barrera, M. Amador, and G. G. Clark, “Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico,” The American journal of tropical medicine and hygiene, vol. 74, no. 2, pp. 290– 302, 2006.

J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications. New York: Springer, 2003.

D. Cardona-Salgado, D. E. Campo-Duarte, L. S. Sepulveda-Salcedo, and O. Vasilieva, “Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach,” Applied Mathematical Modelling, vol. 82, pp. 125–149, 2020.

M. Zhou, H. Xiang, and Z. Li, “Optimal control strategies for a reaction–

diffusion epidemic system,” Nonlinear Analysis: Real World Applications,

vol. 46, pp. 446–464, 2019.

DOI: https://doi.org/10.5540/tcam.2023.024.04.00779

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)


Indexed in:




Desenvolvido por:

Logomarca da Lepidus Tecnologia