A simplified kinetic model for the tropospheric ozone cycle
DOI:
https://doi.org/10.5540/tcam.2024.025.e01794Keywords:
Mathematical Modeling, Ordinary Differential Equations, Air Pollutants, Air Quality, Nitrogen OxidesAbstract
To better understand the dynamics of air pollutants, several mathematical or computational models have been developed and employed. Among the pollutants of interest are those related to the cycle of formation of tropospheric ozone (O3), which involve nitrogen oxides NOx. In this process, there is a sequence of chemical reactions whose most elementary modeling can be described in terms of ordinary differential equations (ODEs), in which the concentrations (in \textmu g/m3) of gases (O, NO, NO2, and O3) are functions of time. A novel study of the model is presented in terms of the qualitative theory of ordinary differential equations, for which the steady state of interest is non-hyperbolic. To study it, the Center Manifold Theorem was used to determine its stability. As for the results, our analytical calculations demonstrate the asymptotic local stability of the steady state, which was also numerically corroborated. Other than this new result of stability, the conclusion is that the simplified model of ozone kinetics with fixed kinetic parameters does not allow the behavior of sustained oscillatory solutions for the referred concentrations of pollutants, requiring other ingredients for this to be feasible.
References
Source files will be provided upon the acceptance of the manuscript.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Trends in Computational and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.