Error Analysis on General Grids for Finite Difference Discretizations of Sturm-Liouville Problems

Authors

  • G.S. Lorenzzetti
  • J.P. Zingano
  • P.R. Zingano

DOI:

https://doi.org/10.5540/tema.2008.09.01.0115

Abstract

We introduce a simple method to obtain very accurate pointwise estimates for both solution and gradient errors of finite difference discretizations on arbitrary grids of one-dimensional Sturm-Liouville problems. Application is given to the detailed analysis of an inconsistent, 2nd-order convergent scheme.

References

[1] J.M. Hyman, M. Shashkov, S.L. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132 (1997), 130 – 148.

J.M. Hyman, S.L. Steinberg, The convergence of mimetic discretization for rough grids, Comput. Math. Applic., 47 (2004), 1565 – 1610.

T.A. Manteufell, A.B. White, Jr., The numerical solution of second-order boundary value problems on nonuniform meshes, Math. Comp., 47 (1986), 511 – 535.

A.A. Samarskii, “The Theory of Difference Schemes”, M. Dekker, New York, 2001.

M. Shashkov, “Conservative Finite-difference Methods on General Grids”, CRC Press, Boca Raton, 1996.

S.L. Steinberg, Applications of high-order discretizations to boundary-value problems, Comput. Meth. Appl. Math., 4 (2004), 228 – 261.

B. Swartz, H.- O. Kreiss, T.A. Manteufell, B. Wendroff, A.B. White Jr., Supraconvergent schemes on irregular grids, Math. Comp., 47 (1986), 537 – 554.

J.P. Zingano, “Convergence of Mimetic Methods for Sturm-Liouville Problems on General Grids”, Ph.D. Thesis, University of New Mexico, Albuquerque, NM, 2003.

Published

2008-06-01

How to Cite

Lorenzzetti, G., Zingano, J., & Zingano, P. (2008). Error Analysis on General Grids for Finite Difference Discretizations of Sturm-Liouville Problems. Trends in Computational and Applied Mathematics, 9(1), 115–124. https://doi.org/10.5540/tema.2008.09.01.0115

Issue

Section

Original Article