Fluxo de Gases em Microcanais: um Estudo da Influência de Coeficientes de Acomodação
DOI:
https://doi.org/10.5540/tema.2007.08.01.0053Abstract
Neste trabalho, busca-se fazer uma análise referente à influência do coeficiente de acomodação no comportamento do fluxo de gases em microcanais planos. Para tanto, visando à obtenção de dados numéricos, será utilizado o método de ordenadas discretas aplicado à problemas clássicos da dinâmica de gases rarefeitos, definidos de acordo com o modelo BGK, da equação linearizada de Boltzmann.References
[1] L.B. Barichello, M. Camargo, P. Rodrigues, C.E. Siewert, Unified solutions to classical flow problems based on the BGK model, Z. Angew. Math. Phys., 52 (2001), 517-534.
L.B. Barichello, C.E. Siewert, A discrete-ordinates solution for a non-grey model with complete frequency redistribution, Journal of Quantitative Spectroscopy and Radiative Transfer, 62 (1999), 665-675.
L.B. Barichello, C.E. Siewert, A discrete-ordinates solution for Poiseuille flow in a plane channel, Z. Angew. Math. Phys., 50 (1999), 972-981.
P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
K.M. Case, Elementary solutions of the transport equation and their application, Ann. Phys., 9 (1960), 1-23.
C. Cercignani, M. Lampis, S. Lorenzani, Variational approach to gas flows in microchannels, Physics of Fluids,16, No. 9 (2004), 3426-3437.
M. Gad-el-Hak, “The MEMS Handbook. Mechanical Engineering Handbook Series”, Second Edition, vol. 1, 2005.
G.H. Golub, C.F. Van Loan, “Matrix Computations”, Johns Hopkins University Press, Baltimore, 1989.
S.K. Loyalka, N. Petrellis, T.S. Storvick, Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates, Z. Angew. Math. Phys., 30 (1979), 514-521.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.