A Função Barreira Modificada e o Problema de Fluxo de Potência ótimo

Authors

  • E.C. Baptista
  • V.A. Sousa
  • G.R.M. Costa

DOI:

https://doi.org/10.5540/tema.2006.07.01.0021

Abstract

Uma nova abordagem para a resolução do problema de Fluxo de Potência Ótimo é apresentada. Fazemos uso de pesquisas recentes, especialmente na área dos métodos de pontos interiores. Nesta abordagem, as restrições de igualdade são tratadas pelo método de Newton e as de desigualdade pelo método de Barreira Modificada. Os testes numéricos, mostram o efetivo desempenho desta metodologia.

References

[1] J.L. Carpentier, Contribution a l’etude du dispatching economique, Bull. Soc. Fr. Elec., Ser. B3 (1962), 431-447.

C.W. Carrol, The created response surface technique for optimizing nonlinear restrained systems, Operations Research, 9 (1961), 169-184.

G.R.M. Costa, Optimal reactive dispatch through primal-dual method, IEEE Transactions on Power Systems, 12, No. 2 (1997), 669-674.

A.V. Fiacco e G.P. McCormick, “Nonlinear Programming: Sequential Unconstrained Minimization Techniques”, John Wiley-Sons, New York, 1968.

K.R. Frisch, “The Logarithmic Potential Method of Convex Programming”, University Institute of Economics (manuscript), Oslo, Norway, 1955.

S. Granville, Optimal reactive dispatch through interior point methods, IEEE Transactions on Power Systems, 9 (1994), 136-146.

N. Karmarkar, A new polynomial-time algorithm for linear programming,Combinatorics, 4 (1984), 373-395.

R. Polyak, Modified barrier functions, Mathematical Programming, 54, No. 2 (1992), 177-222.

D.F. Shanno e R.J. Vanderbei, Interior-point for nonconvex nonlinear programming, Mathematical Programming, 87 (2000), 303-316.

G.L. Torres e V.H. Quintana, Optimal power flow in rectangular form via an interior point method, IEEE Transactions on Power Systems, 13, No. 4 (1998), 1211-1218.

R.J. Vanderbei e D.F. Shanno, An interior-point algorithm for nonconvex nonlinear programming, Computational Optimization and Applications, 13 (1999), 231-252.

M.H. Wright, Why a pure primal Newton barrier step may be infeasible, SIAM Journal on Optimization, 5, No. 1 (1995), 1-12.

Published

2006-06-01

How to Cite

Baptista, E., Sousa, V., & Costa, G. (2006). A Função Barreira Modificada e o Problema de Fluxo de Potência ótimo. Trends in Computational and Applied Mathematics, 7(1), 21–30. https://doi.org/10.5540/tema.2006.07.01.0021

Issue

Section

Original Article